The Matrix Of A Linear Transformation

playboy
I saw a similar post to this one, but i just got lost in the mess of the whole thing. So i just started a new thread.

A question reads:

Let T: Pn ---> Pn be defined by T[P(x)] = p(x) + xp'(x), where p'(x) denotes the derivative. Show that T is an isomorphism by finding Mbb(T) when B = {1, x, x^2, ... , x^n}

From doing the other question and problems in the textbook, i know how to find Mdb(T). I suppose that finding Mbb(T) would be very similar.

I did it like this:

Mbb(T) = [ CbT(1) CbT(x) CbT(x^2) ... CbT(X^n) ]
Mbb(T) = [ Cb(1) Cb(2x) Cb(3x^2) ... Cb((n+1)X^n]

and it gives this nxn matrix:

[1 0 0 ... 0]
[0 2 0 ... 0]
[0 0 3 ... 0]
[0 0 0 ... (n+1)]

now, an isomorphism means that the linear transformation is both one-to-one and onto.

How do you tell that its an isomorphism by just looking at the matrix?
 
Physics news on Phys.org
In this case, your transformation is isomorphic if the matrix is invertible. Why?
 
Their is a theorm in my textbook.

"Let A be an mXn matrix, and let TA : R^n ---> R^m be the linear transformation inudced by A, that is, Ta(X) = AX for all X in R^n.

1. Ta is onto if and only if rank A = m
2. Ta is one-to-one if and only if A = n

oh wait.. that dosn't work in this problem...

ill brb
 
Their is an example in the textbook...

If U is any invertable mxm matrix, the map T: Mmn ----> Mmn given by T(X) = UX is an isomorphism by Example 6 Section 8.2

This example is too long to type out... but it dosn't show any matrix. It just uses the transformation to show it.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top