argon
- 5
- 0
Homework Statement
Consider a photon gas (particle-like nature) with N photons of monochromatic light in a box that has a volume V. You can assume everything is perfectly reflecting. What is the pressure of the photon gas based on the ideal gas law derivation?
Homework Equations
N/A.
The Attempt at a Solution
1) P=-F_{\text{on molecule}}/A
2) F = \frac{dp}{dt}= \frac{-2h\nu}{c\Delta t}
3) Plugging 2 into 1 yields P = \frac{2h\nu}{Ac\Delta t}
4) Define Δt as the time it takes for the photons to undergo one round-trip in the box. So, \Delta t = \frac{2L}{c}
5) Plugging 4 into 3 yields P = \frac{h\nu}{V}
6) This can be rearranged to yield PV=h\nu
7) For multiple photons, PV = Nh\nu_{\text{avg}} (since the photon gas is uniform in frequency, \nu_{\text{avg}} = \nu)
I believe it's supposed to be PV=\frac{1}{3}Nhν, but I can't figure out why! I'm also not sure if that's the right answer, so any clues would be appreciated.
4. Variables
P = Pressure, F = Force, A = Area, L = Length, V = Volume (V = A*L), ν = Frequency, t = Time, p = Momentum, c = Speed of light, h = Planck's constant, N = number of photon
Last edited: