The Probability Density of X^2?

Click For Summary

Homework Help Overview

The discussion revolves around finding the probability density function of the random variable Y, where Y is defined as X squared (Y = X^2) and X is uniformly distributed over the interval [0, 1]. Participants are exploring different methods to derive the probability density and comparing their results to a textbook solution.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to derive the cumulative distribution function (CDF) and subsequently the probability density function (PDF) using integration. Some participants question the notation and steps used in the original poster's reasoning, particularly regarding the equalities presented and the integration variable.

Discussion Status

The discussion is ongoing with participants providing feedback on the original poster's approach. There are clarifications being sought regarding the notation and the steps involved in the derivation. While some participants express confusion, others suggest that the original poster's conclusion about the density function being 1/2 is acceptable.

Contextual Notes

There appears to be some confusion regarding the notation used in the original poster's explanation, particularly concerning the integration process and the representation of equalities. The discussion reflects a mix of interpretations and clarifications without reaching a consensus on the method used.

Kior
Messages
11
Reaction score
0
Here is a question about probability density. I am trying to work it out using a different method from the method on the textbook. But I get a different answer unfortunately. Can anyone help me out?

Question:
Let X be uniformly distributed random variable in the internal [ 0, 1]. Find the probability density of X^2?

My trial:
FY(y) = P(Y≤y) = P(X^2≤y) = P(X≤√y) = FX(√y) = ∫ (from 0 to √y) t dt = 0.5 y ⟹ 0.5 = fY(y).
This is actually inspired by http://math.stackexchange.com/questions/...

Solution on the textbook:
y = x^2
dy = 2x dx
h(y)dy = 1 dx
h(y) 2x dx = dx
h(y) = 0.5/x = 0.5/√y
 
Physics news on Phys.org
Why t dt, not just dt? And your long line of equalities is bracketed with FY(y)=...=fY(y), which is clearly not true. Have you missed a step in typing it out?
 
haruspex said:
Why t dt, not just dt? And your long line of equalities is bracketed with FY(y)=...=fY(y), which is clearly not true. Have you missed a step in typing it out?

Thanks get it

Density function should be 1
 
haruspex said:
... And your long line of equalities is bracketed with FY(y)=...=fY(y), which is clearly not true. Have you missed a step in typing it out?
I suppose that we will never know ,
 
haruspex said:
Why t dt, not just dt? And your long line of equalities is bracketed with FY(y)=...=fY(y), which is clearly not true. Have you missed a step in typing it out?
They're not all equal signs; there's an arrow in there as well. The OP has ##F_Y(y) = y/2\ \Rightarrow\ f_Y(y) = 1/2##, which is, in fact, okay.
 
vela said:
They're not all equal signs; there's an arrow in there as well. The OP has ##F_Y(y) = y/2\ \Rightarrow\ f_Y(y) = 1/2##, which is, in fact, okay.
Ok. The ASCII character used for the arrow in the OP doesn't come out right on my iPad.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
29
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K