The Role of Vacuum Impedance in Electromagnetic Wave Propagation

  • Thread starter Thread starter wimms
  • Start date Start date
  • Tags Tags
    Impedance Vacuum
AI Thread Summary
Vacuum impedance, defined as 377 ohms, is a crucial property of free space that relates to the electric permittivity and magnetic permeability of the vacuum. Changes in vacuum impedance can theoretically occur due to variations in these constants, potentially influencing the propagation of electromagnetic waves, including photons. The discussion explores whether matter in the path of photons can affect vacuum impedance, suggesting that localized changes might create preferred pathways for light. Additionally, the concept of impedance in vacuum raises questions about its implications for phenomena like thermal noise and the bending of light by gravity. Overall, the conversation delves into the complex relationship between vacuum properties and electromagnetic wave behavior.
wimms
Messages
489
Reaction score
0
What is Vacuum Impedance?

In electronics, I would assume that it means some ohmic resistence to alternating EM signals. In vacuum, I understand it is necessary property, elasticity, for vacuum to be able to transfer energy waves. Is it some universal constant?

In wires, conductor needs to be ~3 times lower resistence than insulator to become main carrier of electric current. What puzzles me and I can't find, what would be implications of vacuum impedance change in some specific direction, say tube shaped, would this create preferred path for photon EM waves, creating sort of virtual conductor tunnel into sea of insulation?

Is there any reason to suppose impedance changes can occur? And if yes, then does some matter in the path of photon have any influence on vacuum impedance on that path? Basically, can matter in the path between source and target affect imedance in such a way as to result preference of alternate path between source and target where matter is no present?
 
Physics news on Phys.org
Here's how to understand vacuum impedance.

In an electrical circuit impedance or resistance has the dimensions of velocity. Now it's very odd to think of a 10KΩ resistor as in some way having a velocity associated with it, but when you consider the impedance of the vacuum that view makes much more sense because the velocity in question is the velocity of light. The vacuum impedance is 4pi times the velocity of light in rationalized units, and therefore 377 ohms.
 
Thanks. I seek to understand what it means for space to have impedance. Is frequency of photons basically vibrations of reflexible spacetime structure?
Can we say that in any medium impedance is lower than in vacuum?

In electrical circuit, impedance is also subject to influence by resonances of its elements, like LC circuit. Resonances can both increase and reduce impedance. Reflections from borders between different impedance can cause points with varying effective impedance. Are similar effects valid for space impedance?

Does having 377 ohms impedance mean vacuum is also subject to thermal johnson noise?
 
Originally posted by wimms
What is Vacuum Impedance?
... In vacuum, I understand it is necessary property, elasticity, for vacuum to be able to transfer energy waves. Is it some universal constant?

Yes, vacuum impedence is given by a relation between the two (electric and magnetic) 'constants' of free space; namely, e, the permitivity and u, the permeability of free space:
I = [squ](u/e) where u is mu; e is epsilon

Just like Maxwell's crowning achievement which showed that these two 'contants' define the value of the speed of light, even so they define the value of Vacuum impedence as 377 ohms (as mmwave said).



What puzzles me and I can't find, what would be implications of vacuum impedance change in some specific direction, say tube shaped, would this create preferred path for photon EM waves, creating sort of virtual conductor tunnel into sea of insulation?

Is there any reason to suppose impedance changes can occur?

Excellent question again; and the answer is yes. Any relative change between the permeability and the permittivity will not only change the impedence but also the speed of light since
c = 1/[squ](ue).

This is exactly what happens in a material medium, both impedence and the speed of light change.
However, I suspect you are looking for a change in the vacuum values of these 'constants'.

I will answer that later if you are still interested and if I can find time to be thorough.


Basically, can matter in the path between source and target affect imedance in such a way as to result preference of alternate path between source and target where matter is no present? [/B]

Again, yes; there is a specific instance where this appears to happen.
If I have time later, I'll try to get back to it.

Creator
 
Last edited:


Originally posted by Creator
However, I suspect you are looking for a change in the vacuum values of these 'constants'.
Yes. If fields can influence vacuum, I wonder if localised changes are possible. Why I ask is because I've got some weird thoughts in regards to this:

Originally posted by wimms
I have few questions regarding main 3rd experiment in http://www.tardyon.de/ko2.htm

1) why do they need fancy down-converters? why splitters wouldn't do?
2) What is the function of beam splitters 2 and 3 - why are they required instead of using mirrors to direct necessary beams to converge at common spots on detectors?
3) Cutting off idler1 from splitter 3. Are we supposed to assume that beams idler1 and idler2 do NOT interact AT splitter3, but would be only directed to ID detector? If so, then it looks as cutting off idler1 is equivalent to simply making idler1 path shorter.
4) I assume that if cutoff was done between splitter3 and detector, 'knowledge' would not change, thus interference of signals would remain?

This somehow reminds me unstable electronic circuit, beam paths acting as conductors, wave photons acting as resonant AC current, splitters acting like feedback leaks. How crackpot would it be to suppose that splitters that are more like adders change some sort of space impedance on both alternate paths, and cutting off one of beams causes impedance drop throughout the whole circuit for a beam path that remains intact? Braking AC oscillator circuit loop and making it into DC static current conduit, only instead of free electrons, photons are used.

5) any hint on how to repeat such experiment at home? really, penpointer laser, mirrors, digital camera for detector. Would be interesting homework.
I thought what if few first photons that go through as particles, interact with splitters or space and cause impedance changes on alternate paths, causing next photons take alternate path that again interact with splitters, causing impedance changes in other path again. This would be wavelike minute resonant oscillation of 'circuit' impedance when path is 'undetermined', being outofphase with photons, and perhaps interacting with them so that at detectors interference occurs, either from cancellation or from photon trajectory fluctuations.

When one of paths is obstructed, resonant oscillation is avoided and does not anymore interact with photons, but instead preferred channel due to impedance changes by obstructions is formed.

Thoughts are of course inspired by a need to find intuitive explanation to photons 'knowing' that information about their path is potentially exposed. So I wondered if photons could leave traces in space as impedance changes that could resolve the paths without mysteries.

This obviously sounds fishy, but I'd like to know if there could be anything along these lines possible.

ps. Can gravity be expressed as changes in permitivity and permeability of free space?
 


Originally posted by mmwave
Hmmm, Well gravity can bend light and a change in permitivity or permeability can bend light so this is interesting. But when the light enters normal to the boundary it does not bend. Does this fit with gravity bending light? I suspect not. Also, I can't see how it would explain gravity's effect on matter.
How does gravity bend light that goes straight towards center of mass, ie normal to field lines? What is matter? What would be effect on it if it spreads over several field lines?
 
I believe you mean 'equipotentials,' not field lines.

Gravity will obviously not bend light which is moving directly toward the center-of-mass, i.e. normal to the equipotentials.

However, gravity WILL redshift or blueshift the light, changing its frequency (and energy).

- Warren
 
Originally posted by chroot
However, gravity WILL redshift or blueshift the light, changing its frequency (and energy).
Space impedance change would cause c change. Can that account for redshift/blueshift?
 

Similar threads

Back
Top