cianfa72 said:
An inertial chart in ##T,X## coordinates for 1+1 Minkowski spacetime (1 timelike + 1 spacelike dimension) has a diagram that actually extends on all over the ##T,X## plane (i.e. there is not any boundary like the two hyperbolas of Kruskal chart for Schwarzschild spacetime).
Yes, that's correct. But here ##X## is not a radial coordinate; these coordinates are Cartesian, not spherical. In
spherical coordinates the ##T, R## "plane" of Minkowski spacetime is only a half-plane, with ##0 \le R < \infty##.
cianfa72 said:
As you said for 1+1 Minkowski spacetime the "Kruskal" ##X## coordinate is basically the spherical polar ##r## . Since in this case there is 1 spacelike dimension only, the 'spherical polar ##r##' (i.e. ##X##) takes actually all values in the range ##(- \infty, + \infty)##.
No, it doesn't. Minkowski spacetime only goes from ##0 \le r < \infty##. But the maximally extended Schwarzschild spacetime in Kruskal coordinates goes from ##- \infty < X < \infty## even though ##X## is a
radial coordinate in spherical coordinates,
not a Cartesian coordinate.
So the Kruskal diagram for
Schwarzschild spacetime in ##T, X## coordinates, with ##X## a "radial" coordinate in spherical coordinates (i.e., every point in the diagram represents a 2-sphere, and there are hyperbolic boundaries) looks like a standard spacetime diagram for
Minkowski spacetime in
Cartesian coordinates, i.e., ##X## is a Cartesian coordinate, not a radial coordinate (and if we take the diagram to represent 1+3 Minkowski spacetime, then every point in the diagram represents a 2-
plane, not a 2-
sphere, and there are no hyperbolic boundaries).
If we take the ##M = 0## case of Schwarzschild spacetime, and keep spherical coordinates, then the whole left half-plane of the Kruskal diagram for Schwarzschild spacetime
disappears and only the right half-plane remains (with no hyperbolic boundaries).