- #1

- 970

- 3

## Main Question or Discussion Point

The solution for the Schwarzschild metric is stated from reference 1 as:

[tex]ds^2=- \left(1-\frac{r_s}{r}\right) c^2 dt^2 + \left(1-\frac{r_s}{r}\right)^{-1}dr^2+r^2(d \theta^2 +\sin^2 \theta d \phi^2)[/tex]

The solution for the Schwarzschild metric is stated from references 2 as:

[tex]ds^2 = \left(1 - \frac{r_s}{r} \right) c^2 dt^2 - \left(1 - \frac{r_s}{r} \right)^{-1} dr^2 - r^2 \left(d \theta^2 + \sin^2 \theta d \phi^2 \right)[/tex]

The solution for the Schwarzschild metric is stated from references 3 as:

[tex]ds^2 = \left(1 - \frac{r_s}{r} \right) c^2 dt^2 - \left(1 - \frac{r_s}{r} \right)^{-1} dr^2 - r^2 \left(d \theta^2 - \sin^2 \theta d \phi^2 \right)[/tex]

[tex]r_s[/tex] - Schwarzschild radius

There is a difference in the sign of the elements between the stated solutions.

Which is the correct solution?

Reference:

http://en.wikipedia.org/wiki/Deriving_the_Schwarzschild_solution

http://en.wikipedia.org/wiki/Tolman-Oppenheimer-Volkoff_equation#_ref-ov_3

http://en.wikipedia.org/wiki/Schwarzschild_metric

Last edited: