The use of Riccati equations in optimal control theory

Click For Summary
The discussion focuses on the formulation of linear control theory using matrix Riccati equations, specifically the equations ##\dot{x}=Ax+Bu## and ##\dot{u}=Cx+Du##. It highlights that rewriting these equations as a matrix differential equation allows for easier solutions through diagonalization techniques. The advantage of this approach lies in its accessibility to useful mathematical methods for solving control problems. A participant shares a review paper that may provide additional insights into the topic. Overall, the use of Riccati equations in optimal control theory enhances problem-solving efficiency.
John Finn
Messages
3
Reaction score
1
I know that linear control theory, in the form ##\dot{x}=Ax+Bu##, ##\dot{u}=Cx+Du##, can be put in the form of a matrix Riccati equation. But is there really an advantage to doing so?
 
Last edited by a moderator:
Engineering news on Phys.org
Thread moved.
 
John Finn said:
I know that linear control theory, in the form ##\dot{x}=Ax+Bu##, ##\dot{u}=Cx+Du##, can be put in the form of a matrix Riccati equation. But is there really an advantage to doing so?
I don't know anything about linear control theory or matrix Riccati equations, but the above looks like linear algebra as it relates to systems of differential equations, which I do know something about.
Assuming A, B, C, and D are constants, the two equations above can be rewritten in this form:
##\begin{bmatrix}\dot x \\ \dot u \end{bmatrix} = \begin{bmatrix}A & B \\ C & D \end{bmatrix}\begin{bmatrix} x \\ u \end{bmatrix}##

The advantage of writing the system in this form is that this matrix differential equation can be solved for x and u by diagonalizing the 2 x 2 matrix I wrote using standard techniques.
 
Hello! I want to generate an RF magnetic field at variable frequencies (from 1 to 20 MHz) using this amplifier: https://www.minicircuits.com/WebStore/dashboard.html?model=LZY-22%2B, by passing current through a loop of current (assume the inductive resistance is negligible). How should I proceed in practice? Can i directly connect the loop to the RF amplifier? Should I add a 50 Ohm in series? Thank you!