I The Wedge Product .... Tu, Section 3.7

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Loring W.Tu's book: "An Introduction to Manifolds" (Second Edition) ...

I need help in order to fully understand Tu's section on the wedge product (Section 3.7 ... ) ... ...

The start of Section 3.7 reads as follows:
?temp_hash=95e2e678b5cea7a98901538248d96796.png


In the above text from Tu we read the following:

" ... ... for every permutation ##\sigma \in S_{ k + l }##, there are ##k!## permutations ##\tau## in ##S_k## that permute the first ##k## arguments ##v_{ \sigma (1) }, \cdot \cdot \cdot , v_{ \sigma (k) }## and leave the arguments of ##g## alone; for all ##\tau## in ##S_k##, the resulting permutations ##\sigma \tau## in ##S_{ k + l }## contribute the same term to the sum, ... ... "Since I did not completely understand the above quoted statement I developed an example with ##f \in A_2 (V)## and ##g \in A_3 (V)## ... ... so we have##f \wedge g ( v_1 \cdot \cdot \cdot v_5) ##

## = \frac{1}{2!} \frac{1}{3!} \sum_{ \sigma \in S_5 } f ( v_{ \sigma (1) }, v_{ \sigma (2) } ) g( v_{ \sigma (3) }, v_{ \sigma (4) }, v_{ \sigma (5) } )##Now ... translating Tu's quoted statement above into the terms of the example we have ... ...

" ... for every permutation ##\sigma \in S_{ 2 + 3 }## there are ##2! = 2## permutations ##\tau## in ##S_2## that permute the first ##2## arguments ##v_{ \sigma (1) }, v_{ \sigma (2) }## and leave the arguments of ##g## alone ... ... "

Now, following the above quoted text ... consider a specific permutation ##\sigma## ... say## \sigma_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##Now there are ##2!= 2## permutations ##\tau## in ##S_2## that permute the first ##k = 2## arguments ##( v_{ \sigma (1) }, v_{ \sigma (2) } ) = ( v_2, v_3 )## ...

[Note ... one of the ##k!## permutations is essentially ##\sigma_1## itself ... ]

These permutations may be represented by (is this correct?)

... in ##S_2## ...

##\tau_1 = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}##

##\tau_2 = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}##and in ##S_{ 2 + 3 }## ...## \tau_1 = \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##

## \tau_2 = \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 3 & 2 & 4 & 5 & 1 \end{bmatrix}##Now the resulting permutations ##\sigma \tau## are supposed to contribute the same term to the sum ...... ... ##\sigma_1 \tau_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##

## = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}##and## \sigma_1 \tau_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 5 & 1 \\ 3 & 2 & 4 & 5 & 1 \end{bmatrix}#### = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{bmatrix} ##
Now the two permutations are not identical ... but ... maybe the difference is accounted for in the ##( \text{ sgn } ) ## function somehow ... but how ... ?
Can someone please clarify the above ...

... ... could someone also confirm that the above analysis is basically correct ... ?

Peter
 

Attachments

  • Tu - Start of Section 3.7 ... Wedge Product ... ... .png
    Tu - Start of Section 3.7 ... Wedge Product ... ... .png
    56.8 KB · Views: 504
  • ?temp_hash=95e2e678b5cea7a98901538248d96796.png
    ?temp_hash=95e2e678b5cea7a98901538248d96796.png
    56.8 KB · Views: 708
Physics news on Phys.org
Math Amateur said:
" ... ... for every permutation ##\sigma \in S_{ k + l }##, there are ##k!## permutations ##\tau## in ##S_k## that permute the first ##k## arguments ##v_{ \sigma (1) }, \cdot \cdot \cdot , v_{ \sigma (k) }## and leave the arguments of ##g## alone; for all ##\tau## in ##S_k##, the resulting permutations ##\sigma \tau## in ##S_{ k + l }## contribute the same term to the sum, ... ... "
I think there is a bit of abuse of notation from the author there. What he means that there is a perm ##\tau\in S_{k+l}## (not ##S_k##) that permutes the first ##k## elements and is the identity map on the last ##l## elements. So the two possible values for ##\tau## are ##\tau_1 =##(1 2 3 4 5) and##\tau_2=## (2 1 3 4 5).
If ##\sigma## is (5 1 3 4 2) then
##\sigma\tau_1=##(5 1 3 4 2)(1 2 3 4 5) = (5 1 3 4 2)
and
##\sigma\tau_2=##(5 1 3 4 2)(2 1 3 4 5) = (1 5 3 4 2)

In this case the two terms in the sum (3.5) from this ##\sigma## are:

##\textrm{sgn} (\sigma\tau_1) f(v_5, v_1) g(v_3,v_4,v_2)
= \textrm{sgn} (\sigma)\textrm{sgn}(\tau_1) f(v_5, v_1) g(v_3,v_4,v_2)##
and
##\textrm{sgn} (\sigma\tau_2) f(v_1, v_5) g(v_3,v_4,v_2)
= \textrm{sgn} (\sigma)\textrm{sgn}(\tau_2) f(v_1, v_5) g(v_3,v_4,v_2)##
and the signs of both the second 'sgn' piece and the ##f## piece change between the two, cancelling each other out and making the values the same.
 
  • Like
Likes Math Amateur
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.

Similar threads

Back
Top