Then you could try to manipulate the inequality to show that it is always true.

eckiller
Messages
41
Reaction score
0
I have the transformation:

z' = g(z) = f*z / (f-n) - f*n / (f-n)

f >= 0 , n>= 0 constants that define an interval [n, f].

I want to prove, z' <= z.
 
Physics news on Phys.org
eckiller said:
I have the transformation:

z' = g(z) = f*z / (f-n) - f*n / (f-n)

f >= 0 , n>= 0 constants that define an interval [n, f].

I want to prove, z' <= z.
One way I suppose you could do it is by saying the opposite, and then try to prove yourself wrong:

\frac{fz-fn}{f-n}\geq z
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top