There is N so that[tex] |S_n(x) - S_m(x)| \leq \epsilon [/tex] for

  • Thread starter Thread starter Pearce_09
  • Start date Start date
Pearce_09
Messages
71
Reaction score
0
there is N so that
|S_n(x) - S_m(x)| \leq \epsilon for ever x in I if n,m \geq N

( prove by cauchy's criterion )

claim: lim S_n(x) = S(x)

|S_n(x) - S(x)| < \epsilon /2 if n\geq N
then,
|S_n(x) - S_m(x)| < |S_n(x) - S(x)| + |S(x) - S_m(x)|
< \epsilon /2 + \epsilon /2
< \epsilon

therefor the series converges pointwise to a funtion S(x)
... and I am not sure how to show that this converging uniformly on I
 
Last edited:
Physics news on Phys.org
How did you define uniform convergence?

I have that a sequence of functions s_n \left( x \right) converges uniformely to the function \ell :\left( {a,b} \right) \to \mathbb{R} if:

\forall \varepsilon &gt; 0,\exists n &gt; N \Rightarrow \forall x \in \left( {a,b} \right):\left| {s_n \left( x \right) - \ell \left( x \right)} \right| &lt; \varepsilon

If I understand, you need to show that a sequence of functions s_n \left( x \right) converges uniformely over that interval iff (I believe you only have to prove it one way, using this to prove uniform convergence) it satisfies Cauchy's criterion, being:

\forall \varepsilon &gt; 0,\exists N:m,n &gt; N \Rightarrow \forall x \in \left( {a,b} \right):\left| {s_n \left( x \right) - s_m \left( x \right)} \right| &lt; \varepsilon (*)

So assume that \left( {s_n } \right) satisfies (*). Then for all x in I, the numerical sequence \left( {s_n \left( x \right)} \right) is a Cauchy-sequence and is therefore convergent, call the limit l(x). So we already have pointwise convergence to l(x), the only thing you need to show now is that the convergence is uniform. Now use the assumption of Cauchy's criterion.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top