Theretical aspects of the non-planar DOUBLET LATTICE METHOD

  • Thread starter Thread starter traianus
  • Start date Start date
  • Tags Tags
    Lattice Method
AI Thread Summary
The discussion revolves around programming a doublet lattice code for nonplanar surfaces, specifically addressing LANDAHL's formulation and the measurement of dihedral angles. There is confusion about whether the dihedral angle remains the same or is adjusted when considering symmetry planes. The user also seeks clarification on imposing symmetry boundary conditions in their code, mentioning their approach of using opposite signs for symmetric conditions. Another participant shares their successful implementation of the dihedral angle and boundary conditions, while also inquiring about results from a specific example in a referenced text. The conversation highlights the technical challenges and collaborative problem-solving in computational fluid dynamics.
traianus
Messages
80
Reaction score
0
Hello,
I have been programming a doublet lattice code for nonplanar surfaces with zero thickness. I have some questions about LANDAHL's formulation.

1) How the dihedral angle is measured? This question may appear silly, but please explain. Suppose to have a wing with positive dihedral (let's say 3DEG). Suppose that the plane y-z is a symmetry plane. In the negative portion, is the dihedral still 3 DEG (in the mathematical formulation of the kernel) or 180-3 DEG (measured from + y)?

2) Connected to 1) how do I impose the symmetry boundary conditions? I was doing so by using a symmetric doublet for each sending panel, but then I did not know how to consider the dihedral (see previous question). Anybody knows?
 
Engineering news on Phys.org
Could you possibly keep your title down to a dull roar? That hurt my head.
 
My topic was not about the title of it...
So please post messages related to the topic.
 
Yes, Sir, Sir. My humble apologies. I had totally forgotten that you own this site.
 
The moderators should do something about it. This is not a serious forum. I asked a serious question about an interesting topic and your best shot is to talk about the title? If the moderators do not solve the problem and a person like "Danger" comes to offend people then the forum is not worth it. If I do not see actions I will leave forever and delete all my posts. If you feel happy about that it is fine to me.

Bye.
 
Hi, traianus. If it is still of any use, I have programmed my doublet lattice code using 180-(angle of positive portion) DEG in the negative portion, and it works. I also used boundary conditions with oposite signs in the positive and negative portions, in the case of physically symmetric boundary conditions, and with the same signs, in the case of antisymmetric conditions. This means I invert the sign of the real displacements on the negative portion. Because the normals to the panels have opposite signs in opposite portions.

But now, please, regarding the text from Max Blair, "A compilation of the mathematics leading to the doublet-lattice method", have you run the example from pages 113-114, for the reduced frequency of 1.4? Which results have you obtained?

Thank you.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top