Thermal boundary layer and hydrodynamic boundary layer

AI Thread Summary
The discussion focuses on the relationship between thermal and momentum boundary layers in fluid dynamics. It clarifies that in a plug flow model, the thermal boundary layer forms independently of the momentum boundary layer, which is typically thicker. The temperature profile near the wall is more accurately described by a complementary error function rather than a parabolic shape. The thickness of the thermal boundary layer is defined by the temperature reaching 99% of the difference between the free stream and surface temperatures, rather than a fixed equation. Overall, the conversation emphasizes the complexities of boundary layer interactions and their mathematical representations.
Urmi Roy
Messages
743
Reaction score
1
So I know individually how these form. Unfortunately I haven't found any sources that describe more detailed questions that pop up in my mind.

Could someone help me answer a couple of questions?

1. So if a thermal boundary layer forms in a 'plug flow' model i.e. when there is no momentum b.;ayer formation, the temperature near the surface assumes a parabolic profile.

However, how does the formation of a momentum b.l affect the thermal b.l? Do they form independent of each-other?

2. In a thermal boundary layer, why is it that we define the thickness of the boundary layer as the thickness required to get a (T-Ts)=0.99*T∞ where Ts=surface temperature; T=temp at ∂t and T∞ is free stream temperature. (in momentum bl, boundary layer thickness is when velocity becomes 0.99*U∞)
 
Engineering news on Phys.org
Urmi Roy said:
So I know individually how these form. Unfortunately I haven't found any sources that describe more detailed questions that pop up in my mind.

Could someone help me answer a couple of questions?

1. So if a thermal boundary layer forms in a 'plug flow' model i.e. when there is no momentum b.;ayer formation, the temperature near the surface assumes a parabolic profile.

There is no momentum bl formation because the velocity profile is already fully developed before the heated section of wall is encountered. The temperature near the wall does not assume a parabolic profile, unless you approximate it by a parabola, and use the energy integral method. The more exact profile is a complementary error function variation (at least for the case of plug flow).
However, how does the formation of a momentum b.l affect the thermal b.l? Do they form independent of each-other?
If we neglect the effect of temperature on viscosity, the momentum bl forms independently of the temperature bl, and is somewhat thicker than the temperature bl. However, since the velocity profile associated with a developing momentum boundary layer is changing with distance along the wall, this affects the development of the temperature boundary layer (which is forming inside the momentum boundary layer).
2. In a thermal boundary layer, why is it that we define the thickness of the boundary layer as the thickness required to get a (T-Ts)=0.99*T∞ where Ts=surface temperature; T=temp at ∂t and T∞ is free stream temperature. (in momentum bl, boundary layer thickness is when velocity becomes 0.99*U∞)
It's not given by your equation. It's given by (T-Ts)=0.99*(T∞-Ts). Mathematically, the temperature profile describing the thermal boundary layer extends to infinity. However, on a practical basis, the temperature reaches the free stream temperature within only a short distance from the wall. This is approximated by saying that, once the temperature rise is within 1% of (T∞-Ts), you are essentially there. There are other definitions for the boundary layer thickness similar to this one.
 
Thanks, that was a very enlightening post :smile:

Just two sources of confusion here:

Chestermiller said:
There is no momentum bl formation because the velocity profile is already fully developed before the heated section of wall is encountered. The temperature near the wall does not assume a parabolic profile, unless you approximate it by a parabola, and use the energy integral method. The more exact profile is a complementary error function variation (at least for the case of plug flow).


Firstly, my impression of fully developed flow was that there's still a boundary layer, just that it's reached its maximum thickness, since the flow conditions no longer vary beyond a certain length of the tube. However, you mentioned that "There is no momentum bl formation because the velocity profile is already fully developed"

Secondly, in certain problems we did, we approximated the boundary layer to be like the semi-infinite body heating problem (in conduction) when its in its very initial stage. Its when this is true that the b.l takes the shape of the erfc function. That approximations shouldn't be applicable beyond some point (when the b.l is more developed, I guess and the profile of T is parabolic)...so why is it that for plug flow model the b.l is always erfc-like?

Thanks!
 
Urmi Roy said:
Thanks, that was a very enlightening post :smile:

Just two sources of confusion here:

Firstly, my impression of fully developed flow was that there's still a boundary layer, just that it's reached its maximum thickness, since the flow conditions no longer vary beyond a certain length of the tube. However, you mentioned that "There is no momentum bl formation because the velocity profile is already fully developed"

If you want to consider the parabolic velocity profile for fully developed laminar flow in a circular tube as boundary layer that has penetrated to the center of the tube and is no longer changing, I have no problem with that.

When I said that "There is no momentum bl formation because the velocity profile is already fully developed," what I meant was that the velocity profile is fully established (either for laminar flow or plug flow) before the fluid reaches the heated section of pipe.
Secondly, in certain problems we did, we approximated the boundary layer to be like the semi-infinite body heating problem (in conduction) when its in its very initial stage. Its when this is true that the b.l takes the shape of the erfc function. That approximations shouldn't be applicable beyond some point (when the b.l is more developed, I guess and the profile of T is parabolic)...so why is it that for plug flow model the b.l is always erfc-like?
You are correct in saying that, for plug flow, the thermal boundary layer starts to develop like the erfc solution. However, the shape of the temperature profile, at least for the constant wall temperature case, never approaches a parabolic profile. In plug flow in a circular tube, the erfc solution becomes inaccurate once the erfc boundary layer thickness grows to the point where it approaches the center of the tube. After that, it is not a good approximation, and the behavior approaches the asymptotic temperature profile solution that you get by solving the transient heat conduction equation at long times (using products of exponential time functions times trigonometric spatial functions). This profile is not parabolic.

Chet
 
  • Like
Likes 1 person
Thanks, this makes sense!
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top