Thermal Conductivity: Nonmetal Impact on Change

aaaa202
Messages
1,144
Reaction score
2
For a nonmetal what determines thermal conductivity is the propagation of lattice vibrations. As T increases these lattice vibrations collide with each other more often. Does this mean that the thermal conductivity will de- or increase?
 
Physics news on Phys.org
What would you guess?
 
Im guessing the phonon collisions act as a sort of resistance, so the conductivity drops with increasing temperature. But on the other hand, what if there were no collisions? What would then transmit heat?
 
If there are no collisions, e.g. at very low temperatures, you have ballistic transport which is very rapid.
I think that only so-called Umklapp scattering processes actually can reduce the heat transport and this requires the sum of the crystal momenta of the two phonons to be larger than a reciprocal lattice vector. So it is only important at relatively high energies ~ Debye energy. Whether this includes room temperature depends on the material.
 
  • Like
Likes 1 person
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top