Archived Thermal Diffusion with Heat Source

AI Thread Summary
The discussion revolves around solving a thermal diffusion problem in a cylindrical wire carrying current. The user attempts to derive the temperature distribution T(r) inside the wire, given fixed surface temperature T0 and steady-state conditions. They correctly identify the heat generation term and set up the differential equation but struggle with integration and constants. The user realizes the need to use cylindrical coordinates for the Laplacian operator, which affects their results. They seek clarification on their integration process and the physical implications of their findings.
rabbit44
Messages
28
Reaction score
0

Homework Statement


A cylindrical wire of thermal conductivity k, radius a and resistivity p uniformly
carries a current I. The temperature of its surface is fixed at T0 using water cooling.
Show that the temperature T(r) inside the wire at radius r is given by
T(r) = T0 + p(I^2)(a^2 - r^2)/4pi^2a^4k

Homework Equations


del squared(T) = (c/k)dT/dt - H/k

Where H is heat generated per unit volume


The Attempt at a Solution


I took the system to be in a steady state as the temperature is fixed. So:

d2T/dr2 = -H/k

I took H = I^2 (pl/A)(1/lA)
= I^2p/pi^2a^4

Subbing this into my differential equation and integrating twice wrt r, I get:

T = -(I^2.p.r^2)/(2pi^2.a^4.k) + ba + c

Where b and c are integration constants. I think b must be zero but am not sure why. Then putting in T=T0 at r=a I would get a close answer but with a 2 on the bottom of the second term instead of a 4.

Where did I go wrong?!?

Thanks
 
Last edited:
Physics news on Phys.org
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top