- #1

Mordred

- 2,244

- 167

Anyone that has paid attention to my numerous posts, know that I am a self taught, wannabe cosmologist. I've studied numerous cosmology related articles including, high energy particle physics, perfect fluid and quantum metrics related to Cosmology in the form of the FLRW metrics.

As a self taught Cosmologist I wish to clarify a self visualization of a cosmological behavior/characteristic.

As I relate to cosmology the universe as of 10

Opinions and discussions of that viewpoint welcome

As a self taught Cosmologist I wish to clarify a self visualization of a cosmological behavior/characteristic.

As I relate to cosmology the universe as of 10

^{-43 }sec started out at a hot dense state of unknown size and origin, (numerous theories apply to prior). Naturally this hot dense state will want to disperse to a lower energy state per quanta. (suitable volume unit to describe a lowest possible energy state). As we all know in thermodynamics and pressure laws, a high pressure or temperature region will disperse to the limits of the container to the lowest possible energy state. In terms of cosmology any region of higher energy mass density will desire to reach that lower/evenly distributed energy state.( Makes you wonder in regards of the cosmological constant as merely a pressure/dispersion rate of combined particles/energy forms of that process). Gravity however runs counter to the tendency for energy-mass to evenly distribute, in many ways can be described as localized/positive pressure that for whatever reasons wishes to condense energy-mass. (space-time geometry?) Much of the universes history can be described in the terms of thermo/pressure dispersion vs localized gravity coupled with the dispersion rates, mean free path and distinguishable separation of the particles involved at a specific time period in the universes thermodymanic historyOpinions and discussions of that viewpoint welcome

Last edited: