Thermodynamic temperature derivation

  • #1
kelvin490
Gold Member
228
3
In deriving thermodynamic temperature scale, it uses the concept that heat transfer between two reservoirs is the function of the reservoirs' temperatures. i.e. Q1/Q2=Φ(T1,T2). And then further express that Φ(T1,T2)=ψ(T1)/ψ(T2).

I have two questions, 1. Is it a hidden assumption that the function Φ doesn't change its form for different temperatures? i.e. for different reservoirs we just plug in different temperatures Φ(T1,T2), Φ(T3,T4) but it can never be some other functions for different temperatures. Why?

2. Why Φ(T1,T2) can be expressed as ψ(T1)/ψ(T2)? Any underlying assumptions?
 
Last edited:

Answers and Replies

  • #2
763
71
I have two questions, 1. Is it a hidden assumption that the function Φ doesn't change its form for different temperatures? i.e. for different reservoirs we just plug in different temperatures Φ(T1,T2), Φ(T3,T4) but it can never be some other functions for different temperatures. Why?
Your question doesn't make any sense. The fact that it depends on temperatures means that Φ can change its value for different temperatures. It can.
2. Why Φ(T1,T2) can be expressed as ψ(T1)/ψ(T2)? Any underlying assumptions?
My understanding is this is an underlying assumption, at least in this presentation of the material.
 
  • #3
20,975
4,604
In deriving thermodynamic temperature scale, it uses the concept that heat transfer between two reservoirs is the function of the reservoirs' temperatures. i.e. Q1/Q2=Φ(T1,T2). And then further express that Φ(T1,T2)=ψ(T1)/ψ(T2).

I have two questions, 1. Is it a hidden assumption that the function Φ doesn't change its form for different temperatures? i.e. for different reservoirs we just plug in different temperatures Φ(T1,T2), Φ(T3,T4) but it can never be some other functions for different temperatures. Why?

2. Why Φ(T1,T2) can be expressed as ψ(T1)/ψ(T2)? Any underlying assumptions?
See Section 5.3 in Introduction to Chemical Engineering Thermodynamics by Smith and Van Ness.

Chet
 

Related Threads on Thermodynamic temperature derivation

Replies
4
Views
791
  • Last Post
Replies
6
Views
1K
  • Last Post
2
Replies
44
Views
12K
  • Last Post
Replies
3
Views
741
  • Last Post
Replies
5
Views
902
Replies
9
Views
841
Replies
6
Views
2K
Replies
3
Views
849
Replies
2
Views
708
  • Last Post
Replies
1
Views
648
Top