Third kepler's law error on sun mass calculation

undergraduate
Messages
2
Reaction score
0

Homework Statement


We consider that at the third Kepler's law the Earth mass is 0, that way we are making an error at the Sun mass calculation in comparison to the real Sun mass. In the same calculation we make another error by taking the common error at the gravitational constant, G. Which one of the two errors is the most significant? We are given the Earth mass= 5.9736 × 10^27gr, and the today accepted gravitational constant, G = 6.67384 ± 0.0008 ×10^-8 cgs(cm,g, s).


Homework Equations


third Kepler's law: P^2=4*π^2*α^3/G(sun mass+earth mass)


The Attempt at a Solution


It turns out that the constant in Kepler's Third Law depends on the total mass of the two bodies involved. Kepler himself, studying the motion of the planets around the Sun, always dealt with the 2-body system of Sun-plus-planet. The Sun is so much more massive than any of the planets in the Solar System that the mass of Sun-plus-planet is almost the same as the mass of the Sun by itself. Thus, the constant in Kepler's application of his Third Law was, for practical purposes, always the same.The constant G in the equations above is known as the Gaussian gravitational constant. If we set up a system of units with:
period P in days,
semimajor axis a in AU,
mass Mtot in solar masses,
we find: G=6.707 in cgs units.
This number indicates me that by taking the Earth mass=0 is an unconsidered error.But how am I going to prove that the G error is the significant one?
 
Physics news on Phys.org
Should I try calculate the solar mass throught the formula: M(i)=4*π^2*α^3/P^2*G and then do it again like this:M(ii)= (4*π^2*α^3/P^2*G)-m(earth mass).
In the M(i) if I include the ± 0.0008 error for G I get an error σ= ±1/0,0008= ±1250 at my solar mass(cgs units). Is this correct? In the M(ii) I get the incorrect G(without the ±error and I am getting M(ii)=2.01*10^33gr which is similar with the real solar mass(1.989*10^33gr). Is this all I have to do to solve this problem?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top