This gives us the length of each train as 500 meters.

  • Context: MHB 
  • Thread starter Thread starter Ilikebugs
  • Start date Start date
  • Tags Tags
    Length Trains
Click For Summary
SUMMARY

The length of each train is definitively calculated to be 500 meters. This conclusion is derived from the relative speeds of the two trains, one traveling at 40 km/h and the other at 20 km/h. The algebraic approach involves converting speeds to meters per minute and setting up equations based on the time taken for the trains to pass each other in both the same and opposite directions. The final solution confirms that the length of each train is 500 meters.

PREREQUISITES
  • Understanding of relative speed concepts
  • Basic algebra for solving equations
  • Knowledge of unit conversion (km/h to m/min)
  • Familiarity with time-distance-speed relationships
NEXT STEPS
  • Study relative speed problems in physics
  • Practice algebraic manipulation of equations
  • Learn about unit conversions in speed calculations
  • Explore real-world applications of train scheduling and timing
USEFUL FOR

Students studying physics, educators teaching algebraic problem-solving, and anyone interested in understanding train dynamics and relative motion.

Ilikebugs
Messages
94
Reaction score
0
Two trains of equal length are on parallel tracks. One train is traveling at
40 km/h and the other at 20 km/h. It takes two minutes longer for the trains to
completely pass one another when going in the same direction, than when going
in opposite directions.
Determine the length of each train.

Is there a way to algebraically solve this
 
Mathematics news on Phys.org
I would convert the speeds to m/min...

$$v\,\frac{\text{km}}{\text{hr}}\cdot\frac{1\text{ hr}}{60\text{ min}}\cdot\frac{1000\text{ m}}{1\text{ km}}=\frac{50}{3}v\,\frac{\text{m}}{\text{min}}$$

And so the speed of the faster train (in m/min) is:

$$v_F=\frac{2000}{3}$$

And the speed of the slower train is:

$$v_S=\frac{1000}{3}$$

In fact, we could write:

$$v_F=2v_S$$

Let's let the length of the trains be $\ell$.

Now, when the trains pass going in the same direction, we have:

$$(v_F-v_S)(t+2)=2\ell$$

or:

$$v_S(t+2)=2\ell$$

And when the trains pass going in the opposite direction, we have:

$$(v_F+v_S)t=2\ell$$

or:

$$3v_St=2\ell$$

Can you proceed?
 
t=1 so l=500m?
 
Last edited:
We have

$$3v_St=2L\quad(1)$$

and

$$v_S(t+2)=2L\quad(2)$$

Multiply $(2)$ by 3 and then subtract $(1)$ from the result:

$$3v_S(t+2)=6L\Rightarrow3v_St+6v_S=6L$$

$$6v_S=4L\Rightarrow v_S=\frac{2L}{3}\Rightarrow\frac{1000}{3}=\frac{2L}{3}\implies L=500\text{ m.}$$
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
7K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K