MHB This gives us the length of each train as 500 meters.

  • Thread starter Thread starter Ilikebugs
  • Start date Start date
  • Tags Tags
    Length Trains
Click For Summary
The discussion focuses on determining the length of two trains traveling on parallel tracks, one at 40 km/h and the other at 20 km/h. It is established that it takes two minutes longer for the trains to pass each other when moving in the same direction compared to when they are moving in opposite directions. By converting speeds to meters per minute and setting up equations based on the time taken to pass, the length of each train is calculated. The final conclusion reached is that each train measures 500 meters in length. This algebraic approach effectively demonstrates the relationship between speed, time, and distance in this scenario.
Ilikebugs
Messages
94
Reaction score
0
Two trains of equal length are on parallel tracks. One train is traveling at
40 km/h and the other at 20 km/h. It takes two minutes longer for the trains to
completely pass one another when going in the same direction, than when going
in opposite directions.
Determine the length of each train.

Is there a way to algebraically solve this
 
Mathematics news on Phys.org
I would convert the speeds to m/min...

$$v\,\frac{\text{km}}{\text{hr}}\cdot\frac{1\text{ hr}}{60\text{ min}}\cdot\frac{1000\text{ m}}{1\text{ km}}=\frac{50}{3}v\,\frac{\text{m}}{\text{min}}$$

And so the speed of the faster train (in m/min) is:

$$v_F=\frac{2000}{3}$$

And the speed of the slower train is:

$$v_S=\frac{1000}{3}$$

In fact, we could write:

$$v_F=2v_S$$

Let's let the length of the trains be $\ell$.

Now, when the trains pass going in the same direction, we have:

$$(v_F-v_S)(t+2)=2\ell$$

or:

$$v_S(t+2)=2\ell$$

And when the trains pass going in the opposite direction, we have:

$$(v_F+v_S)t=2\ell$$

or:

$$3v_St=2\ell$$

Can you proceed?
 
t=1 so l=500m?
 
Last edited:
We have

$$3v_St=2L\quad(1)$$

and

$$v_S(t+2)=2L\quad(2)$$

Multiply $(2)$ by 3 and then subtract $(1)$ from the result:

$$3v_S(t+2)=6L\Rightarrow3v_St+6v_S=6L$$

$$6v_S=4L\Rightarrow v_S=\frac{2L}{3}\Rightarrow\frac{1000}{3}=\frac{2L}{3}\implies L=500\text{ m.}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 18 ·
Replies
18
Views
7K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 66 ·
3
Replies
66
Views
7K
  • · Replies 14 ·
Replies
14
Views
2K