Rasalhague
- 1,383
- 2
matheinste said:Dilation, no matter who uses it, always means making larger. Time dilation in all the references we have quoted always means the same thing.
For Adams, Freund, Lerner, Petkov, Schröder, Weinert, Taylor/Wheeler and Tipler/Mosca, it means dilating the total number of units. For you, Lawden and Anthony it means dilating the size of each unit and thus contracting the total number of units. It's as if doctors had one term "pupil dilation", but some doctors used it to mean that a patient's pupils are bigger than normal, while others used it to mean that normal is bigger than a patient's pupils (i.e. the opposite of how their colleagues understand the term), claiming that it makes no difference because in either case dilation refers to something being larger!
matheinste said:The resting observer sees the other clock running slow. Some refernces translate this to "the moving observer sees his proper time projected onto the resting frame coordinates as being increased, running fast, more seconds passed", it still means the same, it just expresses it differently.
Since "observer" and "clock" are each resting in some frame and each moving in another (observer being a colloquial short-hand in this context for "intertial reference frame", and any inertial reference frame being populated by its own notional clocks), we need to pick some standard to say what is being compared to what. If we have a particular example, the standard is chosen for us by the details of the example, by which time interval we're given and which we need to calculate. In the most general case, what is there to break the symmetry and escape reasoning round in circles? The only thing I can think of here is that we have our input, the data we know, as our standard, then the formula gives us some output expressed in terms of that standard. This notion of input and output introduces a natural way of ordering the pair of time intervals, and this allows us to talk meaningfully about which is to be made bigger by which operation. Since we're calling this action time dilation, something relating to time must have been made bigger by it. If \Delta t' = \gamma \; \Delta t is time dilation, then a total is dilated, as we're told by Adams, Freund, Lerner, Petkov, Schröder, Weinert, Taylor/Wheeler and Tipler/Mosca. But if, like Lawden, we use a similar expression--"a moving clock [...] will appear [...] to have its rate reduced--to describe the inverse formula, and call this time dilation, then presumably it's the size of each unit that's been dilated, because it isn't the total: that's got smaller.
matheinste said:Moving clocks run slow, very loosely, says all that needs to be said.
But every clock at rest in some inertial frame is moving in another, the physical situation being perfectly symmetrical. So if dilation is to have any meaning at all, there must be some convention as to what it refers to. Otherwise, why not call it time distortion and save awkward questions. Sure, we could dodge the question by switching our definition of what dilation refers to whenever we want to change from using one of these reciprocal expressions to the other, so as to disguise the fact that they're reciprocal and not identical, but that's hardly a recipe for clarity.
Last edited:

