Time Dilation & Frame of Reference: Who's Time Slows Down?

DrWarezz
Messages
33
Reaction score
0
Hi all,
I know that this isn't a "flaw" in SR. So, I'm not here claiming to have found an amazing flaw in SR. lol.
I actually read about this flaw I think, and thus, probably read the solution, however, it was some time ago.
So, can anyone enlighten me here please? :)

It's related to time dilation and thus Frame of Reference:

It's said that the time between to objects, which are moving relative to each other changes.
e.g. Person A flies away from person B at 0.9c. For # years. He comes back, and is 10yrs younger than person B.
Okay, fine.. time dilation, sure. :)
However; person B is moving relative to person A, thus, person Bs time should slow down relative to person A, right? (or speed up? (i can't remember which one lol :P)).

So, who's time slows down?

Thanks in advance, :biggrin:
[r.D]
 
Physics news on Phys.org
http://mentock.home.mindspring.com/twins.htm
 
Last edited by a moderator:
Hi Nate,

I checked out the website you posted. At first glance it seems like maybe a valid explanation and the numbers crunch correctly.

However, the trajectories don't match.

In the first Bob goes out and comes back relative to the initial rest frame of Ann.

In the second, Ann keeps going in the same direction relative to the initial rest frame of Bob. Sending Bob after her at higher velocity doesn't change this fact.

The second problem is not the same as the first even though the numbers track.

Try this explanation.

http://www.sciam.com/askexpert_question.cfm?articleID=000BA7D8-2FB2-1E6D-A98A809EC5880105&catID=3

juju
 
Last edited:
So, who's time slows down?
Person A ages less. It's not a symmetrical situation, because A has to accelerate to take off, and decelerate to land
However, person B is always in an inertial reference frame
 
Last edited:
meteor said:
Person A ages less. It's not a symmetrical situation, because A has to accelerate to take off, and decelerate to land
However, person B is always in an inertial reference frame

Its not so simple a situation. Acceleration just changes the level of the symmetry, but I don't see how it breaks the symmetry. The symmetry is still there at the new velocity. Just on the basis of acceleration alone, you cannot determine whose viewpoint is correct.

juju
 
The thing is: person B is ALWAYS in a inertial reference frame
person A is NOT ALWAYS in an inertial reference frame
So there's not symmetry
 
Yet, you get the same dilation effects if person A is traveling over a specified space interval without acceleration. It is a matter of understanding that by specifying the space interval you break the symmetry.

juju
 
resolving the twin paradox

Good question, Doc. To understand how the apparent paradox is resolved, it is of great help to realize that SR dictates not just two distortions, length contraction and time dilation, but a third distortion as well, one that can be termed "time dissynchronicity". Without that third, it is difficult to envision a resolution. I do not recommend complicating the picture with accelerations, especially as it is entirely unnecessary.

Here is the full story: http://www.sysmatrix.net/~kavs/kjs/addend4.html
 
Last edited by a moderator:
Hello Ostren,

In the example on the website you gave, I don't see how the readings on the buoy and Earth clock can be different.
They are in the same reference frame.

The two ends of the interval are at different times only when measured on the clock of the moving observer.

The clock starting points are at different times in the moving frame, but they tick off the same interval.

juju
 
Last edited:
  • #10
juju said:
..In the example on the website you gave, I don't see how the readings on the buoy and Earth clock can be different. They are in the same reference frame.
Yes, but it is from someone else's reference frame they are being perceived. It's fundamental Lorentz transform: separated clocks of a moving elongated frame read different times. I don't know why, but the fools have adopted the verbiage, "The Relativity of Simultaneity", to describe this... no wonder it winds up being obfuscated.

juju said:
The two ends of the interval are at different times only when measured on the clock of the moving observer.
Not really. That observer can have an entire cosmos filled with comoving clocks belonging to her native frame, and of course they will all read the same time. So it's not *precisely* as you state. The relatively moving observer reckons the Earth-to-buoy clocks to be out of sync. Note that I use the term "reckons" very frequently. In order for lightspeed to be on par from everyone's perspective, this reckoning must be assessed. And in fact, it is truly coming across that way. The spread-out clocks of an alien frame are not in sync, and that's perfectly real. It's hard to detect, because there are so many other dynamics at play at relativistic speeds.. the corrections for image transmission delays are nontrivial. That's why I choose to use the term "reckons". After adjusting for other dynamics, when you open your eyes and LOOK, those alien clocks will be out of accord.

juju said:
The clock starting points are at different times in the moving frame, but they tick off the same interval.
juju
Right.. I said that in my "Background" section: those clocks advance at the same time-dilated rate.

[If the original poster, DocWarezz has any difficulty following http://sysmatrix.net/~kavs/kjs/addend4.html, his questions are more than welcome.]
 
Last edited by a moderator:
  • #11
juju said:
Hi Nate,

I checked out the website you posted. At first glance it seems like maybe a valid explanation and the numbers crunch correctly.

However, the trajectories don't match.
The trajectories match right up until the point someone accelerates.

The point is that either person can be the oldest when both twins next meet, depending on what happens next.

Thus there is no paradox, in flat-space time it's unambiguously clear who ages more -the person who ages the most is the person who did not accelerate, whoever that was.
 
  • #12
Thanks all.
I still don't get how you know who is accelerating.

For example, A is accelerating relative to B as much as B is accelerating relative to A.
How is the symmetry broken? Shouldn't As time dilate relative to B, equally, Bs time should dilate relative to A?

I understand you've tried to explain this already, but I still don't understand it.. Could someone enlighten me some more please? :)

Thank you,
[r.D]
 
  • #13
DrWarezz said:
Thanks all.
I still don't get how you know who is accelerating.

For example, A is accelerating relative to B as much as B is accelerating relative to A.
How is the symmetry broken? Shouldn't As time dilate relative to B, equally, Bs time should dilate relative to A?

I understand you've tried to explain this already, but I still don't understand it.. Could someone enlighten me some more please? :)

Thank you,
[r.D]

Suppose someone draws a triangle on a flat sheet of paper. There is a mathematical result called the triangle inequality that says that the sum of two sides of a triangle will always be greater than the third side.

This results basically arises from the fact that a straight line is the shortest distance between two points. When you make a detour, you can't possibly shorten the path.

The situation in relativity and the twin "pardox" is very similar,with two important differences.

The first difference is that we measure not distance, but the time it takes to traverse a path.

The second difference is that the longest time interval (rather than the shortest) is a "straight line". Or to use the technical term, the longest time interval arises when a body travels along a "geodesic".

So instead of saying the shortest distance between two points is a straight line, we say that the longest time between two points is a path known as a geodesic.

It's very easy to tell when an object is traveling along a geodesic in flat space-time. The situation when gravity involved is only slightly more complex, but if you're having trouble understanding the idea, it's worthwhile understanding the flat space-time case first and saving the case where space-time is not flat (i.e. when there is gravity) for later.

Moving along a geodesic is the natural motion of a body when no force is applied. When a force is applied to a body, the acceleration of the body is easily measured with an accelerometer, or even the "seat of one's pants". So there is no doubt about who is accelerating, and who is not accelerating. The body that has a force applied to it is the oen that's accelerating. Newton's laws work in an inertial frame that is not accelerating. Newton's laws do not work in an accelerating frame, one feels additional "inertial" forces. So if you are comfortable with the basic physics of Newton's laws and know what an inertial frame is, you shouldn't have any problem determining when a body is accelerating and when it's not accelerating. A body is an inertial frame is one that is not accelerating.
 
  • #14
DrWarezz said:
Thanks all.
I still don't get how you know who is accelerating.

For example, A is accelerating relative to B as much as B is accelerating relative to A.
How is the symmetry broken? Shouldn't As time dilate relative to B, equally, Bs time should dilate relative to A?
As I said in my post #8 in this thread, accelerations only complicate the issue unnecessarily. Did you read my http://www.sysmatrix.net/~kavs/kjs/addend4.html ??

Accelerations do NOT IN ANY WAY determine who is "actually" moving, as there is no such thing as unequivocal motion under Relativity. So just put that idea out of your mind, is my humble suggestion. Time dilation is NOT the entire story. If it were, then you would truly have a contradiction, because each twin's clock is slowed by time dilation relative to the other. Only by understanding the time dissynchronicity inherent in the Lorentz Transform can you come to appreciate that the paradox is resolved. So say I.

What pervect answered you about triangles and trajectories -- I just don't know where all that's going except maybe he desires to confuse you further?
 
Last edited by a moderator:
  • #15
ostren said:
What pervect answered you about triangles and trajectories -- I just don't know where all that's going except maybe he desires to confuse you further?

A and B have to cross a square of grass from one corner to the opposite one. A walks straight across the grass, while B thinks that walking on the grass is forbidden and walks along a path on two sides of the square. B walks faster so that A and B arrive at the opposite corner at the same time. (Thus A gets to the middle of the square just as B is turning the corner). A and B have pedometers and find that B has walked further than A.

"That's because I walked directly, while your path had a bend in it" says A
"But direction is relative, so how come it doesn't work the other way round" says B.

Taking B's point of view, A is walking slower, and at a 45 degree angle to B, and so is only covers half the forward distance that B is covering. This is true on both halves of the walk. Also taking B's definition of forward, A turns through 90 degrees half way through the walk. Thus A should only have walked half as far as B. Paradox?

In fact all aspects of the twin paradox are mirrored here, with accelerating becoming turning. One can have a "resolution without turns" if instead of turning B passes his pedometer to C who is already walking in the required direction.

People don't think of this as being paradoxical, so why is there such a problem with the twin paradox?
 
  • #16
ostren said:
As I said in my post #8 in this thread, accelerations only complicate the issue unnecessarily. Did you read my http://www.sysmatrix.net/~kavs/kjs/addend4.html ??
Your analysis is fine, but realize that you still invoke acceleration: If you wish to have the traveling twin return and compare herself in age with her "stay at home" sister, she must change inertial frames. That's acceleration.

Accelerations do NOT IN ANY WAY determine who is "actually" moving, as there is no such thing as unequivocal motion under Relativity.
One twin remains in the same inertial frame throughout the exercise; the other twin does not: she accelerates! That acceleration breaks the symmetry.
What pervect answered you about triangles and trajectories -- I just don't know where all that's going except maybe he desires to confuse you further?
He was explaining how someone traveling a curved worldline through spacetime ages less than someone who travels a straight worldline between the same spacetime points. In the case of the twins, the one that accelerates follows a curved worldline, while the one who stays at home remains on her straight (single inertial frame) worldline and thus ages more.
 
Last edited by a moderator:
  • #17
ostren said:
What pervect answered you about triangles and trajectories -- I just don't know where all that's going except maybe he desires to confuse you further?

What I'm trying to explain is abstract, but it's fundamentaly not very complicated - it's just geometry.

I'll try some different words, perhaps they'll get through, (or perhaps it won't, we'll have to see).

What is invariant in special relativity is not time, nor space, but the Lorentz interval. The Lorentz interval is the difference of the squares between the space interval, and the time interval multiplied by the speed of light.

ds^2 = dx^2 - (c*dt)^2

So the geometry of special relativity is Lorentzian geometry.

Lorentz geometry is almost the same as Euclidian geometry, but not quite. There is that pesky minus sign in front of c*dt^2.

If you remember your Euclidian geometry, you remember that distance is defined by

ds^2 = dx^2 + dy^2 + dz^2

(this is the Phythagorean theorem). There are no minus signs.

This is what makes some of the results a little different for Lorentzian geometry than they are for Euclidean geometry, such as the fact that that a straight line is the longest time between two points. In Euclidean geometry, it's the shortest distance - it's that minus sign in front of the 't' that makes the difference.

The key point is this. If one draws a diagram, called a space-time diagram, which is just a graph of position vs time, the twin paradox can be represented on this graph by a triangle.

One observer moves along a "straight line" in the Lorentz geometry, called a geodesic. The other observer does not move along a straight line, he moves along two sides of a triangle.

Two points determine a line in flat Lorentzian geometry, just as they do in Euclidian geometry. And the parallel postulate works too (as long as the geometry is flat) - so it is not possible for two different straight lines to join the same two points. Thus, when space-time is flat, there is exactly one observer between any two points who follows a geodesic. (Things get considerably more complicated when space-time isnt' flat, which is why I strongly suggest deferring questions about that case until the situation in flat space-time is understood).

Nobody expects the sum of two sides of a triangle to be equal to the third side in Euclidean geometry. The only reason people expect that the sum of the time readings on two clocks not following a straight line will be equal to the time reading of a third clock that is following a straight line is because they (falsely) think that time is a fundamental invariant. It's not - the true invariant is the Lorentz interval.


Note that the Lorentz interval measured along a path for any observer is proportional the elapsed time for that observer, because of the definition of the interval. In the body's own frame of reference, the distance it travels is zero. So we have

ds^2 = -(c*dt)^2

the Lorentz interval is -c^2 times the time interval.

What's important in resolving the twin paradox is not actually acceleration. Acceleration shows up on a space-time diagram as the curved line. What's important is that one observer follows a straight line , and the other observer does not.

This shows up in such things as the magnitude of the difference in the clock readings. The difference in the two clocks when they are re-united depends on the distance travelled, and the "angle" on the space-time diagram. The angle can be seen to be related directly to the velocity change with a little graphical work. The acceleration per se is not important except to the extent that it's product with time determines the total angle, the change in velocity.

Acceleration may not be ithe ultimate "cause" of the time dilation, but it is a very convenient way of telling who is traveling along a straight line (a geodesic), and who is not traveling along a straight line. And it's not difficult to understand at all - acceleration can be "felt", the laws of physics are not and never have been independent of acceleration. This is why all Newtonian physics must be done in an inertial frame. Newtonian physics will not work in a non-inertial frame. So anyone who understands Newtonian physics should be able to tell, unambiguously, when a body is accelerating, and when it is not. An accelerating body will have a non-zero force on it in any inertial frame - and in a non-inertial frame, Newton's laws won't apply directly.
 
Last edited:
  • #18
ostren said:
Accelerations do NOT IN ANY WAY determine who is "actually" moving, as there is no such thing as unequivocal motion under Relativity.

And here we go again! Given two frames in inertial motion relative to each other, if one frame experiences an acceleration, this acceleration can be detected in the frame experiencing it and it can be said then that the accelerated frame's state of motion relative to the inertial frame's has changed.
 
  • #19
How's this? Relative velocity equally affects how each observer caclulates the expected time and space distortions ascribed to the other. When only one entity undergoes acceleration, that also affects those calculations but ONLY those made by the accelerating entity in assessing the distortions ascribed to the non-accelerating one. Nothing is concluded about states of motion, as they remain perfectly relative.
 
  • #20
  • #21
ostren said:
Yes, but it is from someone else's reference frame they are being perceived. It's fundamental Lorentz transform: separated clocks of a moving elongated frame read different times. I don't know why, but the fools have adopted the verbiage, "The Relativity of Simultaneity", to describe this... no wonder it winds up being obfuscated.

All the clocks start from a synchronized state. Although the two clocks in the rest frame exist at different times in the moving frame, their tick rates as seen from the moving frame are identical.

Therefore, they can not have different time readings as seen from the moving frame.

juju
 
  • #22
pervect said:
The trajectories match right up until the point someone accelerates..

In the real world situation the trajectories are mirror images of each other from the point of view of the original reference frames of the two observers.

This is not true in the example.

juju
 
  • #23
Hi all,

Try this one.

Twin A is on earth, Twin B in the spaceship.

Twin A measures the distance and time to be d and t on his instruments in his reference frame, where v=d/t. There is no relative velocity between twin A and the distance to be measured.

Twin B measures the distance and time on his instruments in his reference frame to be D and T. Since there is a relative velocity between Twin B and the distance to be measured, Twin B measures this distance as D=d/gamma
The time Twin B measures is then T=D/v=(d/gamma)/v=(d/v)gamma=t/gamma.

Therefore, when twin B gets back to Earth he is younger then Twin A having measured less time passing for himself then twin A measures passing for himself.

Acceleration is not a factor, since a oneway trip at constant velocity will give similar results.

juju
 
  • #24
juju said:
All the clocks start from a synchronized state.
When you say that, are you referring to the original scenario outlined in the thread starter, post #1? or are you referring to some alternate scenario?

Just tell me precisely which scenario you're referring to and I'll answer. Much to your disbelief, the CLOCK DISSYNCHRONICITY is very real and can be explained. Acceleration's effect on the reckoning of distant clocks is lop-sided, favoring those in the same direction as the acceleration to tick faster, and those in the opposite direction to tick slower -- relative to the observing entity, which is the accelerating entity. This distortion is also commensurate with distance, tending to distort clocks the greater, the more distant they are. Anyway, that's how the (separated) clocks that were originally in sync get to be out-of-sync! And mind you, those distortions are in addition to the usual SR distortions based just on relative velocity.

In the final analysis, once the two twins reach "cruising speed" and are just coasting at steady pace, separated clocks in one frame can be seen as out of sync when viewed from the other frame. That is a COLD HARD FACT of rudimentary SR and the Lorentz transform; check it out.

And this time dissynchronicity aspect works in nicely in order to concoct a resolution of the Twin Paradox that forsakes accelerations altogether, and their attendant lop-sided distortions, those described above.
 
Last edited by a moderator:
  • #25
juju said:
Since there is a relative velocity between Twin B and the distance to be measured, Twin B measures this distance as D=d/gamma
I don't have the foggiest idea what span you're talking about Twin B measuring!
 
  • #26
ostren said:
I don't have the foggiest idea what span you're talking about Twin B measuring!

The distance passing by twin B from his referencce frame viewpoint is contracted. It is in Twin A's reference frame. at rest with respect to twin A and moving with respect to twin B.

juju
 
Last edited:
  • #27
ostren said:
When you say that, are you referring to the original scenario outlined in the thread starter, post #1? or are you referring to some alternate scenario?
.

I am referring to the scenario in "Twin Paradox Without Accelerations"

If there is no acceleration, as the title implies, then the two clocks at the ends of the interval don't get out of sync due to acceleration.

In cases when they do, wouldn't it imply that this is based also on the magnitude of the acceleration also. And isn't this an effect of the equivalence principal, requiring GR.

juju
 
Last edited:
  • #28
I think that juju refers to what is explained in this page
http://www.sysmatrix.net/~kavs/kjs/addend4.html
I didn't thought about this possibility. My anterior comments were about the "classical" twin paradox, where accelerations are present
 
Last edited by a moderator:
  • #29
juju said:
I am referring to the scenario in "Twin Paradox Without Accelerations"

If there is no acceleration, as the title implies, then the two clocks at the ends of the interval don't get out of sync due to acceleration.

In cases when they do, wouldn't it imply that this is based also on the magnitude of the acceleration also. And isn't this an effect of the equivalence principal, requiring GR.

juju
Thanks for clarifying, and yes you make a decent point... it's all the same, all based on the Lorentz Transform. But acceleration in flat space (ie. out in deep intergalactic space where gravitation is absent/negligible) does not have to be considered part and parcel of GR. The formula for distant clock rate distortions, namely dt(1+gx)/gamma, is I believe a straightforward integration of SR's Lorentz transform. So sure, it's all the same, but no, there's no need to invoke GR.

Now, on to why the separated clocks of a relatively moving frame are out of sync despite the scenario being drawn up with no accelerations: You will find those dissynchronicities inherent (built in) to the Lorentz Transform, even in its simplest form. Check it out. Even though the scenario drawn up in http://www.sysmatrix.net/~kavs/kjs/addend4.html only includes the Earth-to-buoy span at constant speed (for that leg), the presumption (I guess) is that some historical acceleration must be attributed to have caused the relative motion in the first place. Maybe that's feeble, alright; but if you look up that most rudimentary Lorentz formula for SR, you'll see the dissynchronicity of separated moving clocks therein incorporated. As I earlier balked, with a monicker like "The Relativity of Simultaneity", it's no wonder why this important distortion gets easily glossed over, and/or fully obfuscated.
 
Last edited by a moderator:
  • #30
juju said:
The distance passing by twin B from his reference frame viewpoint is contracted. It is in Twin A's reference frame. at rest with respect to twin A and moving with respect to twin B.
No, I cannot accept that, unless you clarify further. In http://www.sysmatrix.net/~kavs/kjs/addend4.html on the subject, I delineate Earth and its unmoving buoy as endpoints of a stretch of "real estate", which stretch the relatively moving twin B (Stella, then Alf) would find to be contracted. But without endpoints specified, plain old empty space cannot be seen to contract. So I'm still not clear on the intent of your earlier post. Thanks.
 
Last edited by a moderator:
  • #31
juju said:
In the real world situation the trajectories are mirror images of each other from the point of view of the original reference frames of the two observers.

This is not true in the example.

juju

I'm not sure why you say that. Initailly, a and b are receeding from each other with some velocity v. Regardless of who accelerates, after the turnaround point, a and b are approaching with some velocity v', which can be set to be equal to the inital velocity v by accelerating the correct amount.

Either a can accelerate or b can, it doesn't matter which one as far as the relative separation goes.
 
  • #32
ostren said:
How's this? Relative velocity equally affects how each observer caclulates the expected time and space distortions ascribed to the other. When only one entity undergoes acceleration, that also affects those calculations but ONLY those made by the accelerating entity in assessing the distortions ascribed to the non-accelerating one. Nothing is concluded about states of motion, as they remain perfectly relative.

While the motion still remains relative, what is concluded is that the relationship has changed - it's not the same as it was before, and further, since the acclerated observer can tell he has been accelerated he can conclude that it is his motion which has changed.
 
  • #33
geometer said:
...since the acclerated observer can tell he has been accelerated he can conclude that it is his motion which has changed.
I beg to differ: a gravitational field arose that (1) exactly countered the thrust of his engines and (2) caused the other twin/entity to accelerate.
 
  • #34
ostren said:
The formula for distant clock rate distortions, namely dt(1+gx)/gamma, is I believe a straightforward integration of SR's Lorentz transform. So sure, it's all the same, but no, there's no need to invoke GR.

Here you are referring, I believe to the observation of the stationary clocks as seen from the moving frame. This is a valid observation only if the observer in the moving frame is measuring the tick rate of the clocks in the stationary frame. It does not relate to what the clocks are actually measuring in the rest frame nor to the actual measurement of time in the moving frame.

juju
 
  • #35
ostren said:
No, I cannot accept that, unless you clarify further

In a situation with no endpoints defined,which means no distance is defined, then the situation is totally symmetrical.

Here you would just have an increasing or decreasing interval. In my opinion this case is unsolvable. Both observers see exactly the same thing from their point of view.

juju
 
Last edited:
  • #36
juju said:
...Here you are referring, I believe to the observation of the stationary clocks as seen ...
The formula refers to the assessment of a distant clock's tick rate as reckoned from a frame that FEELS acceleration. And you're right that it's entirely subjective and in no way says anything about what is experienced by the NATIVES of any frame. As always, the natives know of no distortions whatsoever.
 
Last edited by a moderator:
  • #37
pervect said:
I'm not sure why you say that.

If you consider the starting point in the real world situation they both arrive at the end back at the starting point.

In the example, this is not true. They both arrive at the end some distance from the starting point.

The math works but I don't think the situational mapping is valid.

juju
 
  • #38
juju said:
In a situation with no endpoints defined,which means no distance is defined, then the situation is totally symmetrical.

Here you would just have an increasing or decreasing interval. In my opinion this case is unsolvable.
What?
If you are making an assertion about length contraction, and you definitely WERE (originally), then say exactly what SPAN is being contracted. It would help immensely if you restate from scratch your scenario and your resulting conclusions. I'd just love to bicker further!
 
  • #39
ostren said:
What?
If you are making an assertion about length contraction, and you definitely WERE (originally), then say exactly what SPAN is being contracted. It would help immensely if you restate from scratch your scenario and your resulting conclusions. I'd just love to bicker further!

If a distance is defined in the rest frame of the earth, and for all these cases it is, then this distance is contracted when measured by the moving observer (on his instruments) traveling this distance. Therefore, less time is measured by the moving observer on his instruments. He experiences less time.

If the situation was that two space ships were approaching each other with a relative velocity v in deep space with no reference frame defined other than the ones attached to each space ship, then the distance between them could not be defined as existing in a specific reference frame . It would exist in each reference frame simultaneously. In this case there would be no solution to the paradox.

juju
 
  • #40
ostren said:
I beg to differ: a gravitational field arose that (1) exactly countered the thrust of his engines and (2) caused the other twin/entity to accelerate.

If a gravitational field arose that exactly countered the thrust of his engines, then he did NOT accelerate, so he has nothing to detect. But, now the other twin/entity can detect his acceleration and make the unequivocal statement that his state of motion relative to the first frame has changed.
 
  • #41
Hi,

this may help clarify my position. I hope so.

Consider a distance with fixed endpoints in the rest frame of observer A, with observer A near one end and observer Z at the far end.. Observer B is traveling parallel to this distance at a fixed velocity relative to the rest frame of observer A and at a known perpendicular distance.

When observer B crosses the perpendicular to A, they synchronize their clocks via light signals. At the same time observer A sends a light signal to observer Z to synchronize clocks with him.

When, B crosses the perpendicular to Z, what is the elapsed time relation between their clocks.

Here observer B measures less time on his clock than observers A and Z (who measure the same time) measure on their clocks.

According to my point of view this can be calculated directly from length contraction and velocity. There is no acceleration involved, and no round trip involved.

This occurs because the defining of the distance in a particular rest frame breaks the symmetry inherent in SR.

juju
 
  • #42
juju said:
This occurs because the defining of the distance in a particular rest frame breaks the symmetry inherent in SR.
Both frames measure the same "thing"--the time it takes B to travel from A to Z. Since the two frames are in relative motion, they will of course make different measurements.

But, since no acceleration is involved, the usual SR effects are completely symmetric. Each frame will say that clocks in the other frame are operating slow, etc.

Of course, this has little to do with the "twin paradox".
 
  • #43
Doc Al said:
Both frames measure the same "thing"--the time it takes B to travel from A to Z. Since the two frames are in relative motion, they will of course make different measurements.

But, since no acceleration is involved, the usual SR effects are completely symmetric. Each frame will say that clocks in the other frame are operating slow, etc.

Of course, this has little to do with the "twin paradox".

This has everything to do with the twin paradox and the breaking of symmetry. The distance traveled, the endpoints, are defined on the Earth's reference frame no matter what that distance is, Without this there is no symmetry breaking. Acceleration does not break the mathematical symmetry of SR, it just regauges it.

Another thing. You must understand the difference between time experienced (measured) in a specific frame,
and the time observed by counting the tick rate in some other frame. They are different concepts.

juju
 
Last edited:
  • #44
juju said:
This has everything to do with the twin paradox and the breaking of symmetry. The distance traveled, the endpoints, are defined on the Earth's reference frame no matter what that distance is, Without this there is no symmetry breaking. Acceleration does not break the mathematical symmetry of SR, it just regauges it.
Where's the "symmetry breaking"? In your example, the two frames see each other's clocks as being slow--total symmetry. In the "twin paradox" one twin really does age less--the symmetry is broken.
 
  • #45
Doc Al said:
Where's the "symmetry breaking"? In your example, the two frames see each other's clocks as being slow--total symmetry. In the "twin paradox" one twin really does age less--the symmetry is broken.

The symmetry breaking is in the FACT that the distance is defined in one reference frame not the other. This means the distance traveled is seen as different from the point of view of the two observers.

If the interval is undefined as being in one reference frame or the other, as in another example I have posted here, then no solution is possible.

juju
 
  • #46
geometer said:
If a gravitational field arose that exactly countered the thrust of his engines, then he did NOT accelerate, so he has nothing to detect. But, now the other twin/entity can detect his acceleration and make the unequivocal statement that his state of motion relative to the first frame has changed.
If you want to deny the very essence of Relativity, then that's your prerogative. Each observer can rightly claim to be stock still in ANY scenario, bar none. All physical motion, bar none, is relative, with zero favoritism attached. No differentiation can be made as to what is "unequivocal" and what isn't, in terms of "state of motion". The proper conclusion is that each observer can claim his own proprietary world, in which HE is stock still: and the behavior of light rays corroborates that claim to utter perfection.
 
  • #47
ostren said:
If you want to deny the very essence of Relativity, then that's your prerogative. Each observer can rightly claim to be stock still in ANY scenario, bar none. All physical motion, bar none, is relative, with zero favoritism attached. No differentiation can be made as to what is "unequivocal" and what isn't, in terms of "state of motion". The proper conclusion is that each observer can claim his own proprietary world, in which HE is stock still: and the behavior of light rays corroborates that claim to utter perfection.

Well, let me quote from an articleon the Twin Paradox in the "Encyclopedia of Physics, 2nd Edition," by Joseph Dreitlein of the University of Colorado, Department of Physics:

"...each twin can absolutely detect with accelerometers a different history of acceleration."

And - "Since in the inertial system in which A is at rest [the earthbound twin], the acceleration of B implies that v(t) is somewhere non-zero..."

Accelerations can be absolutely detected and an unequivocal conclusion drawn that the state of motion of the accelerated frame has changed.
 
  • #48
geometer said:
Well, let me quote from an article on the Twin Paradox in the "Encyclopedia of Physics, 2nd Edition," by Joseph Dreitlein of the University of Colorado, Department of Physics:

"...each twin can absolutely detect with accelerometers a different history of acceleration."

And - "Since in the inertial system in which A is at rest [the earthbound twin], the acceleration of B implies that v(t) is somewhere non-zero..."

Accelerations can be absolutely detected and an unequivocal conclusion drawn that the state of motion of the accelerated frame has changed.
An "unequivocal conclusion drawn that the state of motion of the accelerated frame has changed"?? Dreitlein never said that. Why don't you quote him more fully, eh? What's the defintiion of "v(t)" for instance? The guy never voiced what YOU are claiming -- not in the passage you've cited, anyway!

Here's the truth:

Two spacecraft s, out in deep intergalactic space where gravitation is absent/negligible, drift away from one another at 50 MPH. Then one of them fires an exhaust jet and slows down. Now their relative speed is 40 MPH. Craft A can "make the unequivocal statement that his state of motion has changed" (your words) vis-a-vis Craft B. Yet Craft B can also "make the unequivocal statement that his state of motion has changed" vis-a-vis Craft A. Ok, you might say, but that's AFTER the acceleration... what about DURING the acceleration, you might ponder. During, it's the same old hackneyed tale: the one that fired his engine remained stock still in His World for the duration, and the other guy remained stock still in His World for the duration. A spurious gravitational force arose which nullified the one's engine thrust, is all. How you define the phrase "state of motion relative to" might be at the heart of this delightful quibble.

If you think you have a valid authority, quote it more completely. I don't see any accord with your assertions in the cited passage.
 
  • #49
Ok - Here are the full quotes, and the quoted definition of v(t).

With respect to V(t) Dreitlein says - " The time t [refering to the differential in the integral of the time dilation equation] is the synchronized time read by clocks in a chosen inertial frame, and v(t) records the history of the velocity of the moving clock measured in this frame."

The full quotes from my previous post:

"To mitigate the force of the paradox, it might be remarked that each twin can absolutely detect with accelerometers a different history of acceleration."

"Since in the inertial reference system in which A is at rest, the acceleration of B implies that v(t) is somewhere non-zero, the clock B will necessarily measure a shorter lapse of time between D and R [Departure and Return] than A whose velocity
v(t) is always zero; see Eq 1."

Note that in the last quote Dreitlein uses v(t) for both B's velocity and A's velocity.

My conclusion is a restatement of Dreitlien's assertion that "...the acceleration of B implies that v(t) is somewhere non-zero..." In combination with his statement that A and B can absolutely detect accelerations, this certainly seems to me an unequivocal statement that due to the acceleration of B we are able to say that its state of motion of has changed.
 
  • #50
Thanks, I VERY MUCH appreciate your efforts. but there's still not enough of the passage to see what he's driving at. His references to a "v(t)" are simply the relative velocity of the clock that is seen to be moving, from A's vantage. From B's vantage, there is a v(t) as well, describing A's velocity. So where's the beef? Regardless of accelerations, v(t) will be non-zero simply by virtue of the fact that B departed (and later returned)! So where's the beef? A's velocity is not zero in any absolute sense! Why does the bozo say, "clock B will necessarily measure a shorter lapse of time between D and R [Departure and Return] than A, whose velocity v(t) is always zero"?

Can you scan the article and post the image? I'll tear it to pieces, I swear. Why does the bozo say, "To mitigate the force of the paradox, it might be remarked that each twin can absolutely detect with accelerometers a different history of acceleration"? Mitigation?? Force of the paradox?? There are only four fundamental forces and the "Force of the Paradox" is not one of them!

The best approach is to realize that the Twin Paradox is never -- I repeat, NEVER -- resolved by concluding that one twin "really truly" moved, while the homebound twin "really truly" stayed stationary... that would be some childish nonsense! Post the whole article.

And you'll see in http://www.sysmatrix.net/~kavs/kjs/addend4.html that the spacebound twin can be adjudged stock still throughout; and there's still no contradiction.
 
Last edited by a moderator:

Similar threads

Replies
54
Views
3K
Replies
11
Views
2K
Replies
87
Views
4K
Replies
14
Views
1K
Replies
9
Views
268
Replies
20
Views
2K
Replies
35
Views
5K
Back
Top