To find total work done from multiple reversible processes

Click For Summary

Homework Help Overview

The discussion revolves around a thermodynamics problem involving an ideal gas undergoing three distinct processes: isochoric, isothermal, and isobaric. Participants are analyzing the work done during these processes and attempting to reconcile their calculations with a provided solution.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to calculate the work done in each process but questions the validity of their results, particularly in the context of the final expression for total work.
  • Some participants question the assumptions made regarding temperature changes and the definitions of work done on versus by the gas.
  • There are discussions about the signs of the work done in the isothermal process and whether the calculations align with the physical behavior of the gas.

Discussion Status

Participants are actively engaging with the original poster's calculations, offering guidance on potential errors and suggesting a careful review of the thermodynamic states involved. There is a recognition of multiple interpretations and the need for clarity in the problem setup.

Contextual Notes

There is a mention of the need to clarify whether the work done is being calculated on the gas or by the gas, which may affect the interpretation of the results. Additionally, the original poster's calculations appear to conflict with a provided solution, prompting further examination of the assumptions and definitions used.

warhammer
Messages
164
Reaction score
33
Homework Statement
One mole of an ideal gas is heated isochorically till its temperature is doubled. Then it is expanded isothermally till it reaches the original pressure. Finally it is cooled by an isobaric process and restored to the original state. By assuming all the processes to be reversible, show that the resultant work done is RT [2 log 2-1].
Relevant Equations
Isothermal W= nRT ln (V(2)/V(1))
Isobaric W= P (V(2)-V(1))
The question is given in 3 parts.

For first part, process is isochoric so Work done=0. We know here that at end of the process (a), T2=T1 while V remains constant (we can take it as V1) so P2=2P1.

For second part, process is isothermal so T is constant. At end of process we reach P1 again from 2P1, thus V2 for the end stage of this process=V1/2. Isothermal W= RT ln (1/2)

For the last part, original state is restored. Thus final volume for this particular state is V1 from V1/. P is kept constant. Thus Isobaric W = P1 (V1-V1/2)= (P1V1)/2.

Adding first and third results we will not get the value expressed in solution. I would be very grateful if someone looked over my solution and offered guidance as to where I am making the error..
 
Physics news on Phys.org
warhammer said:
Homework Statement:: One mole of an ideal gas is heated isochorically till its temperature is doubled. Then it is

warhammer said:
For first part, process is isochoric so Work done=0. We know here that at end of the process (a), T2=T1 while V remains constant (we can take it as V1) so P2=2P1.
If the temperarure is doubled, then T₂ = 2T₁ (not T₂ = T₁).

I haven't checked anything else in detail but also note that you need to be clear if you are being asked for the work done on the gas or the work done by the gas.
 
warhammer said:
For second part, process is isothermal so T is constant. At end of process we reach P1 again from 2P1, thus V2 for the end stage of this process=V1/2. Isothermal W= RT ln (1/2)
Note that your expression for ##W## is negative. Does this make sense if the gas is expanding?

Adding first and third results we will not get the value expressed in solution. I would be very grateful if someone looked over my solution and offered guidance as to where I am making the error..
You seem to have made a number of simple mistakes or you made a bunch of typos. I suggest you carefully determine the pressure, temperature, and volume at the beginning and end of each process.
 
State 1: T, V, P
State 2: 2T, V, 2P
State 3: 2T, 2V, P
State 4: T, V, P

Show these on a P-V diagram
 

Similar threads

Replies
10
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K