Topology: Show Equivalence of T and T' on R^2

  • Thread starter Thread starter emob2p
  • Start date Start date
  • Tags Tags
    Topology
emob2p
Messages
56
Reaction score
1

Homework Statement


I am asked to show that T=[particular point topology on R^2 ((0,0) being the particular point)] is equal to T'=[topology on R^2 from taking the product of R in the particular point topology (0 being particular point) with itself].



The Attempt at a Solution



I'm pretty sure the book is wrong and this problem can't be solved. Consider the set {(0,0),(1,1)}. This is open in T, but I cannot see how this is open in T' since for the point (1,1) we cannot construct an open set that contains (1,1) but is contained in {(0,0),(1,1)}. The closest we can get is {0,1}x{0,1}={(0,0),(1,0),(0,1),(1,1)}. Am I correct, or am I missing something?
 
Physics news on Phys.org
emob2p said:

Homework Statement


I am asked to show that T=[particular point topology on R^2 ((0,0) being the particular point)] is equal to T'=[topology on R^2 from taking the product of R in the particular point topology (0 being particular point) with itself.
For my own benefit, a set is open in the "particular point topology" if and only if it is either empty of contains the "particular point". In particular, a set in R^2 with the particular point topology, (0,0) being the "particular point", T, if and only if it contains (0,0).
A set is open in the "Cartesian product topology" if and only if it is the Cartesian product of two open sets. Here a set is open in T' if and only if it contains a pair (0,y) and the pair (x, 0).



The Attempt at a Solution



I'm pretty sure the book is wrong and this problem can't be solved. Consider the set {(0,0),(1,1)}. This is open in T, but I cannot see how this is open in T' since for the point (1,1) we cannot construct an open set that contains (1,1) but is contained in {(0,0),(1,1)}. The closest we can get is {0,1}x{0,1}={(0,0),(1,0),(0,1),(1,1)}. Am I correct, or am I missing something?
If I have understood this correctly, yes you are right!
 
Not quite, the "Cartesian product topology" is generated from the set of Cartesian products of two open sets. If we took your definition for open sets in R^2, then it would be possible for the union of two open sets to not be open. See the difference?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top