Torque and angular acceleration problem

AI Thread Summary
To determine the torque required for an angular acceleration of 0.75 rad/s² in a system of four connected masses, the moment of inertia (I) must be calculated using the formula I = ∑ m_i r_i², where m_i represents each mass and r_i is the distance from the mass to the axis of rotation. The moment of inertia for the rods connecting the masses can be calculated using the parallel axis theorem, particularly for the rods AD, AB, and CD. Since the rods are massless, the contributions of the point masses can be summed directly without needing integral calculus. The final torque can then be found using the relationship T = I * (angular acceleration). Understanding these calculations is crucial for solving the problem effectively.
feather
Messages
1
Reaction score
0
Hi, I have a problem that I just can't seem to figure out. Here it is:

Four masses are arrnaged as shown below. They are connected by rigid, massless rods of lengths 0.75 m and 0.50 m. What torque must be applied to cause an angular acceleration of 0.75 rad/s^2?

A--------B
l
l
------------(Axis of rotation)
l
l
D--------C

(B and C are connected by a rod, I couldn't get the picture to look right)

A= 4 kg, B=3 kg, C=5 kg, D=2 kg

I know that torque=I(rotational inertia) times angular acceleration, but I don't know what equation for I to use. None of the equations given in the book for I, (hoop, cylinder, sphere, rod, and plate) seem to fit. I'm stuck!

I would appreciate any help!
 
Physics news on Phys.org
the formula you want to look into is
I = \sum m_i r_i^2

where m_i is the mass of the i'th particle
and r_i is the distance from that particle
to the axis of rotation.
 
Let T be the point of meeting of the axis of rotation and road AD . Then what you need to do is to calculate the M.I around the T point. First calculate M.I of AD around T (how to calculate rod's moment of inertia around the centre?) , then calculate M.I of AB and CD rodad around the axis of rotation using parallel axis theorem. Once you add all those M.I , you get the net M.I which is to be used in T=I.(angular acceleration)

BJ
 
Use the formula given by qbert, it is the equation used to solve the moment of inetia for all the other geometeries listed in your book, such as a sphere, rod and hoop. But when you have just a few point masses their is no need to use the integral and it can be numerically solved by summing the contribution of each mass relative to the axis of rotation. The only reason you can take this approach is because the rod is massless (or can be neglected.)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top