Understanding Total and Partial Derivatives in Multivariable Calculus

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Derivatives
Ted123
Messages
428
Reaction score
0
Are the following equalities between total and partial derivatives true if \frac{dy}{dx}=f(x,y)? \displaystyle \frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f(x,y) \displaystyle \frac{d^2f}{dx^2} = \frac{\partial f}{\partial x}\frac{\partial f}{\partial y} + \left( \frac{\partial f}{\partial y} \right) ^2 f(x,y)
 
Physics news on Phys.org
Ted123 said:
Are the following equalities between total and partial derivatives true if \frac{dy}{dx}=f(x,y)? \displaystyle \frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f(x,y) \displaystyle \frac{d^2f}{dx^2} = \frac{\partial f}{\partial x}\frac{\partial f}{\partial y} + \left( \frac{\partial f}{\partial y} \right) ^2 f(x,y)

This is a good resource
http://en.wikipedia.org/wiki/Total_derivative
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top