Total Power Radiated by Ultra-relativistic Particle

  • Thread starter Thread starter jameson2
  • Start date Start date
  • Tags Tags
    Particle Power
jameson2
Messages
42
Reaction score
0

Homework Statement



Given the formula for power radiated into a solid angle, evaluate the total power radiated to all angles by an ultra relativistic particle, keeping the leading power of \gamma only.

Homework Equations


The power formula:
\frac{dP'}{d\Omega}=\frac{q^2 \alpha^2}{\pi^2 c}\frac{2\gamma^{10}\theta^2}{(\gamma^2 \theta^2 +1)^5}

The Attempt at a Solution



Basically, I can't integrate this:

P'= \int^{2\pi}_0 \int^\pi_0 \frac{q^2 \alpha^2}{\pi^2 c}\frac{2\gamma^{10}\theta^2}{(\gamma^2 \theta^2 +1)^5} sin(\theta)d\theta d\phi

I was thinking that since gamma will be large, you can ignore the 1 on the bottom line, but that doesn't get me anywhere. Possibly I'm just missing how I can use the fact that the question says "keeping only the leading power of gamma", but it's not clear to me at all.Thanks for any hints.
 
Last edited:
Physics news on Phys.org
how about re-arrange as follows
<br /> Psingle-quote<br /> = \int^{2\pi}_0 \int^\pi_0 \frac{q^2 \alpha^2}{\pi^2 c}\frac{2\gamma^{10}\theta^2}{(\gamma^2 \theta^2 +1)^5} sin(\theta)d\theta d\phi <br /> <br /> = \int^{2\pi}_0 \int^\pi_0 \frac{q^2 \alpha^2}{\pi^2 c}\frac{2\theta^2}{( \theta^2 +\frac{1}{\gamma^2})^5} sin(\theta)d\theta d\phi<br />

then consider a power expansion
 
So just get
\theta^{10} + 5\theta^8\frac{1}{\gamma^2}
on the bottom line? Is this what it means by only keep the leading power of gamma?

I'm still not sure how to go about integrating this though.
 
as gamma, gets large, 1/gamma gets small, so I would try to expand in power series in terms of 1/gamma and only keep the lowest order terms. geometric series may be handy here, though you will need to be careful on how you manipulate theta...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top