A Trace of a product of Dirac Matrices in a Fermion loop

RicardoMP
Messages
48
Reaction score
2
I'm working out the quark loop diagram and I've drawn it as follows:

quark loop.jpg


where the greek letters are the Lorentz and Dirac indices for the gluon and quark respectively and the other letters are color indices.
For this diagram I've written:

$$i\Pi^{\mu\nu}=\int_{}^{}\frac{d^4k}{(2\pi)^4}.[ig(t_a)_{ij}\gamma^\mu].[\frac{i[(\not\! k-\frac{\not{q}}{2})+m_1]}{(k-\frac{q}{2})^2-m_1+i\epsilon}\delta_{il}].[ig(t_b)_{kl}\gamma^\nu].[\frac{i[(\not\! k+\frac{\not{q}}{2})+m_2]}{(k+\frac{q}{2})^2-m_2+i\epsilon}\delta_{kj}]$$

In Peskin & Schroeder's Introduction to QFT it is said: "a closed fermion loop always gives a factor of -1 and the trace of a product of Dirac matrices". In short, I can write the above expression as:

$$i\Pi^{\mu\nu}=g^2T_F\delta{ab}\int_{}^{}\frac{d^4k}{(2\pi)^4}\frac{tr[\gamma^\mu.((\not\! k-\frac{\not{q}}{2})+m_1).\gamma^\nu.((\not\! k+\frac{\not{q}}{2})+m_2)]}{((k-\frac{q}{2})^2-m_1+i\epsilon).((k+\frac{q}{2})^2-m_2+i\epsilon)}$$

where ##T_F## is the Dynkin index in the fundamental representation I get after contracting the generators and deltas.
What I'm having a hard time with is on how to explicitly write the Dirac indices in each gamma matrix and slashed momenta in order to get something of the sort, e.g, ##(matrix)_{ii}=tr(matrix)##.
 
Physics news on Phys.org
What is tr(AB) in terms of the components of A and B?

Also, I am unsure why you would want to write this out explicitly. It is far (far!) easier to use gamma matrix and trace relations to compute the trace.
 
There are some useful formulae for such traces in the appendix of Peskin&Schroeder. You can derive them by using the anticommutation relations of the Dirac matrices.
 
Orodruin said:
What is tr(AB) in terms of the components of A and B?

Also, I am unsure why you would want to write this out explicitly. It is far (far!) easier to use gamma matrix and trace relations to compute the trace.
I might have not been clear, I'm sorry. I do want to use the trace identities in order to do the calculations. I just wanted to write out the indices explicitly so I show clearly that the numerator is indeed a trace.
 
First the matrix product is (Einstein summation convention used)
$$(AB)_{ij}=A_{ik} B_{kj}$$
Then the trace is the sum of the diagonal elements. In the Ricci calculus you just have to set ##i=j## in the above formula (implying summation over ##i## then of course):
$$\mathrm{Tr}(AB)=A_{ik} B_{ki}.$$
 
I have written a Mathematica program called Package-X that can help you with your Dirac traces and loop calculation. I suggest after completing the calculation by hand, you check it with the output of Package-X.

Here is what the calculation might look like in your Mathematica notebook.

Trace-PackageX.png


Copy the following into a blank Mathematica notebook for editable code:
[CODE title="Trace-PackageX.nb"]Notebook[{

Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"<<", "X`"}]], "Input",
CellLabel->"In[1]:=",ExpressionUUID->"d68acd69-9e6f-4b16-be40-73037f22b7d6"],

Cell[BoxData["\<\"\\!\\(\\*TemplateBox[List[\\\"\\\\\\\"Package-X v2.1.1, by \
Hiren H. Patel\\\\\\\\nFor more information, see the \\\\\\\"\\\", \
TemplateBox[List[\\\"\\\\\\\"guide\\\\\\\"\\\", \\\"paclet:X/guide/PackageX\\\
\"], \\\"HyperlinkPaclet\\\"]], \\\"RowDefault\\\"]\\)\"\>"], "Print",
CellLabel->
"During evaluation of \
In[1]:=",ExpressionUUID->"befefef7-2330-4488-a63e-82744427c722"]
}, Open ]],

Cell[CellGroupData[{

Cell[BoxData[
RowBox[{"Spur", "[",
RowBox[{
SubscriptBox["\[Gamma]", "\[Mu]"], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"k", "-",
RowBox[{"q", "/", "2"}]}], ")"}], ".", "\[Gamma]"}], "+",
RowBox[{"m1", " ", "\[DoubleStruckOne]"}]}], ",",
SubscriptBox["\[Gamma]", "\[Nu]"], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"q", "/", "2"}]}], ")"}], ".", "\[Gamma]"}], "+",
RowBox[{"m2", " ", "\[DoubleStruckOne]"}]}]}], "]"}]], "Input",
CellLabel->"In[2]:=",ExpressionUUID->"c1fd717f-9d65-4d47-8be3-7152b8684d0b"],

Cell[BoxData[
RowBox[{
RowBox[{"8", " ",
SubscriptBox["k", "\[Mu]"], " ",
SubscriptBox["k", "\[Nu]"]}], "-",
RowBox[{"2", " ",
SubscriptBox["q", "\[Mu]"], " ",
SubscriptBox["q", "\[Nu]"]}], "+",
RowBox[{"4", " ", "m1", " ", "m2", " ",
SubscriptBox["\[DoubleStruckG]",
RowBox[{"\[Mu]", ",", "\[Nu]"}]]}], "-",
RowBox[{"4", " ",
RowBox[{"k", ".", "k"}], " ",
SubscriptBox["\[DoubleStruckG]",
RowBox[{"\[Mu]", ",", "\[Nu]"}]]}], "+",
RowBox[{
RowBox[{"q", ".", "q"}], " ",
SubscriptBox["\[DoubleStruckG]",
RowBox[{"\[Mu]", ",", "\[Nu]"}]]}]}]], "Output",
CellLabel->"Out[2]=",ExpressionUUID->"c7080a80-df67-433a-9f81-e826e245e4c9"]
}, Open ]],

Cell[CellGroupData[{

Cell[BoxData[
RowBox[{"%", "//", "TraditionalForm"}]], "Input",
CellLabel->"In[3]:=",ExpressionUUID->"a01137ae-5895-4b17-bb2d-77e1b5d0a83c"],

Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["k", "\[Mu]"], " ",
SuperscriptBox["k", "\[Nu]"]}], "-",
RowBox[{"4", " ",
SuperscriptBox["k", "2"], " ",
SuperscriptBox["\[ScriptG]",
RowBox[{"\[Mu]", "\[InvisibleComma]", "\[Nu]"}]]}], "+",
RowBox[{"4", " ", "m1", " ", "m2", " ",
SuperscriptBox["\[ScriptG]",
RowBox[{"\[Mu]", "\[InvisibleComma]", "\[Nu]"}]]}], "-",
RowBox[{"2", " ",
SuperscriptBox["q", "\[Mu]"], " ",
SuperscriptBox["q", "\[Nu]"]}], "+",
RowBox[{
SuperscriptBox["q", "2"], " ",
SuperscriptBox["\[ScriptG]",
RowBox[{"\[Mu]", "\[InvisibleComma]", "\[Nu]"}]]}]}],
TraditionalForm]], "Output",
CellLabel->
"Out[3]//TraditionalForm=",ExpressionUUID->"26103d2a-5388-4778-ab7e-\
3f50f76001f2"]
}, Open ]],

Cell[CellGroupData[{

Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"LoopIntegrate", "[",
RowBox[{
RowBox[{"Spur", "[",
RowBox[{
SubscriptBox["\[Gamma]", "\[Mu]"], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"k", "-",
RowBox[{"q", "/", "2"}]}], ")"}], ".", "\[Gamma]"}], "+",
RowBox[{"m1", " ", "\[DoubleStruckOne]"}]}], ",",
SubscriptBox["\[Gamma]", "\[Nu]"], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"k", "+",
RowBox[{"q", "/", "2"}]}], ")"}], ".", "\[Gamma]"}], "+",
RowBox[{"m2", " ", "\[DoubleStruckOne]"}]}]}], "]"}], ",", "k", ",",
RowBox[{"{",
RowBox[{
RowBox[{"k", "-",
RowBox[{"q", "/", "2"}]}], ",", "m1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"k", "+",
RowBox[{"q", "/", "2"}]}], ",", "m2"}], "}"}]}], "]"}], "/.",
RowBox[{
RowBox[{"m2", "|", "m1"}], "\[Rule]", "m"}]}], "//",
"LoopRefine"}]], "Input",
CellLabel->"In[4]:=",ExpressionUUID->"26c2c3b2-c443-45d6-985b-d7d5004495c0"],

Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"4", " ",
RowBox[{"DiscB", "[",
RowBox[{
RowBox[{"q", ".", "q"}], ",", "m", ",", "m"}], "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["m", "2"]}], "+",
RowBox[{"q", ".", "q"}]}], ")"}]}],
RowBox[{"3", " ",
RowBox[{"q", ".", "q"}]}]]}], "-",
FractionBox[
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"12", " ",
SuperscriptBox["m", "2"]}], "+",
RowBox[{"5", " ",
RowBox[{"q", ".", "q"}]}]}], ")"}]}],
RowBox[{"9", " ",
RowBox[{"q", ".", "q"}]}]], "-",
RowBox[{
FractionBox["4", "3"], " ",
RowBox[{"(",
RowBox[{
FractionBox["1", "\[Epsilon]"], "+",
RowBox[{"Log", "[",
FractionBox[
SuperscriptBox["\[Micro]", "2"],
SuperscriptBox["m", "2"]], "]"}]}], ")"}]}]}], ")"}], " ",
SubscriptBox["q", "\[Mu]"], " ",
SubscriptBox["q", "\[Nu]"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["4", "3"], " ",
RowBox[{"DiscB", "[",
RowBox[{
RowBox[{"q", ".", "q"}], ",", "m", ",", "m"}], "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["m", "2"]}], "+",
RowBox[{"q", ".", "q"}]}], ")"}]}], "+",
RowBox[{
FractionBox["4", "9"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"12", " ",
SuperscriptBox["m", "2"]}], "+",
RowBox[{"5", " ",
RowBox[{"q", ".", "q"}]}]}], ")"}]}], "+",
RowBox[{
FractionBox["4", "3"], " ",
RowBox[{"q", ".", "q"}], " ",
RowBox[{"(",
RowBox[{
FractionBox["1", "\[Epsilon]"], "+",
RowBox[{"Log", "[",
FractionBox[
SuperscriptBox["\[Micro]", "2"],
SuperscriptBox["m", "2"]], "]"}]}], ")"}]}]}], ")"}], " ",
SubscriptBox["\[DoubleStruckG]",
RowBox[{"\[Mu]", ",", "\[Nu]"}]]}]}]], "Output",
CellLabel->"Out[4]=",ExpressionUUID->"b84b5d35-33bc-4be1-97fe-7f6dcc187173"]
}, Open ]]
},
WindowSize->{676, 876},
WindowMargins->{{Automatic, 626}, {Automatic, 156}},
FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)",
StyleDefinitions->"Default.nb"
]
[/CODE]
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top