GreenPrint
- 1,186
- 0
Homework Statement
[PLAIN]http://imagizer.imageshack.us/v2/800x600q90/690/0tab.png
I'm asked to find the transfer function and then find the state space representation and seem to be stuck.
Homework Equations
The Attempt at a Solution
My textbook states that for a noninverting operational amplifier shown below
http://imagizer.imageshack.us/v2/800x600q90/10/zmir.png
\frac{V_{o}(s)}{V_{i}(s)} = \frac{A}{1 + frac{AZ_{1}(s)}{Z_{1}(s) + Z_{2}(s)}}
and for large A
\frac{V_{o}(s)}{V_{i}(s)} = \frac{Z_{1}(s) + Z_{2}(s)}{Z_{1}(s)}
For my circuit
[PLAIN]http://imagizer.imageshack.us/v2/800x600q90/690/0tab.png
I'll make the follow substitutions
R_{4} = 110 KΩ
C_{2} = 4 μF
R_{3} = 600 KΩ
R_{2} = 400 KΩ
C_{1} = 4 μF
R_{1} = 600 KΩ
Now then
Z_{1}(s) = R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1}
Z_{2}(s) = R_{3} + (C_{2}s + \frac{1}{R_{4}})^{-1}
Hence for my circuit the transfer function is
\frac{V_{o}(s)}{V_{i}(s)} = \frac{Z_{1}(s) + Z_{2}(s)}{Z_{1}(s)} = \frac{R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1} + R_{3} + (C_{2}s + \frac{1}{R_{4}})^{-1}}{R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1}}
I can rearrange and get
V_{o}(s)(R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1}) = V_{i}(s)(R_{2} + (C_{1}s + \frac{1}{R_{1}})^{-1} + R_{3} + (C_{2}s + \frac{1}{R_{4}})^{-1})
R_{2}V_{o}(s) + \frac{R_{1}}{C_{1}R_{1}s + 1}V_{o}(s) = R_{2}V_{i}(s) + \frac{R_{1}}{C_{1}R_{1}s + 1}V_{i}(s) + R_{3}V_{i}(s) + \frac{R_{4}}{C_{2}R_{1}s + 1}V_{i}(s)
L^{-1}(R_{2}V_{o}(s)) + \frac{\frac{1}{C_{1}}}{s + \frac{1}{C_{1}R_{1}}}V_{o}(s) = L^{-1}(R_{2}V_{i}(s) + R_{3}V_{i}(s)) + \frac{\frac{1}{C_{1}}}{s + \frac{1}{C_{1}R_{1}}}V_{i}(s) + \frac{\frac{1}{C_{2}}}{s + \frac{1}{C_{2}R_{4}}}V_{i}(s)
R_{2}V_{o}(t) + \frac{1}{C_{1}}L^{-1}(\frac{V_{o}(s)}{s + \frac{1}{C_{1}R_{1}}}) = (R_{2} + R_{3})V_{i}(t) + \frac{1}{C_{1}}L^{-1}(\frac{V_{i}(s)}{s + \frac{1}{C_{1}R_{1}}}) + \frac{1}{C_{2}}L^{-1}(\frac{V_{i}(s)}{s + \frac{1}{C_{2}R_{4}}})
I'm not sure how to evaluate this further
Last edited by a moderator: