Transformation of Dirac spinors

Click For Summary
SUMMARY

The discussion focuses on the transformation of Dirac spinors as outlined in "Lessons in Particle Physics" by Luis Anchordoqui and Francis Halzen. The key equations involved are (1.5.49) and (1.5.51), where (1.5.49) describes the transformation of the Dirac gamma matrices under an infinitesimal Lorentz transformation, represented by ##S^{-1}(\Lambda)\gamma^{\mu}S(\Lambda)\Lambda_{\mu}^{\nu}=\gamma^{\nu}##. The transformation parameters ##\omega_{\mu\nu}## are crucial for deriving the commutation relation in (1.5.51), which is ##[\Sigma^{\mu\nu},\gamma^\rho]=-i(g^{\mu\rho} \gamma^\nu-g^{\nu\beta}\gamma^\mu)##. The discussion highlights the importance of the metric tensor ##g^{\mu\nu}## in this derivation and confirms that the overall sign in the final result is critical.

PREREQUISITES
  • Understanding of the Dirac equation and its implications in quantum mechanics.
  • Familiarity with Lorentz transformations and their infinitesimal representations.
  • Knowledge of gamma matrices and their algebraic properties.
  • Basic grasp of tensor calculus, particularly the metric tensor and its role in physics.
NEXT STEPS
  • Study the derivation of the Dirac equation and its significance in quantum field theory.
  • Learn about the properties of gamma matrices and their applications in particle physics.
  • Explore the mathematical formulation of Lorentz transformations in detail.
  • Investigate the role of the metric tensor in general relativity and quantum mechanics.
USEFUL FOR

This discussion is beneficial for theoretical physicists, graduate students in particle physics, and anyone interested in the mathematical foundations of quantum mechanics and field theory.

Gene Naden
Messages
320
Reaction score
64
So I am working through Lessons in Particle Physics by Luis Anchordoqui and Francis Halzen, the link is https://arxiv.org/PS_cache/arxiv/pdf/0906/0906.1271v2.pdf

I am in the discussion of the Dirac equation, on page 21, trying to go from equation 1.5.49 to 1.5.51. And I get stuck.

Equation 1.5.49 is ##S^{-1}(\Lambda)\gamma^{\mu}S(\Lambda)\Lambda_{\mu}{^\nu}=\gamma^{\nu}##
where Lambda is an infinitesimal Lorentz transformation and S is the corresponding transformation of the wave function, also infinitesimal, given by ##S=1-\frac{i}{2}\omega_{\mu \nu}\Sigma^{\mu \nu}##.

I am not sure I understand ##\omega## . I think it is the parameters of the transformation and that the equation is supposed to be true for all ##\omega##.

Equation 1.5.51 is ##[\Sigma^{\mu\nu},\gamma^\rho]=-i(g^{\mu\rho} \gamma^\nu-g^{\nu\beta}\gamma^\mu)##. This is the one I am having trouble reproducing.

I see the metric tensor g appears in the result. Perhaps this is from the relation ##\gamma^\mu\gamma^\nu+\gamma^\nu \gamma^\mu=2g^{\mu\nu}##
 
Physics news on Phys.org
Gene Naden said:
trying to go from equation 1.5.49 to 1.5.51.

Multiply both sides of (1.5.49) by ##S\left(\Lambda\right)## on the left. Use (1.3.16) to get the infinitesimal version of ##\Lambda_{\mu}{}^\nu##. Since each ##\omega## is infinitesimal, take the product of any two terms that each involve an ##\omega## to be zero. Keep free and summed indices straight. I also used ##2\omega_{\alpha \beta} = \omega_{\alpha \beta} + \omega_{\alpha \beta} = \omega_{\alpha \beta} - \omega_{\beta \alpha}##.

How far can you get?
 
Your suggestions got me a lot closer! I got it except for a minus sign on the overall result.
(1.3.16) ##\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu}##
(1.5.49) ##S^{-1}\gamma^\mu S \Lambda^{\nu}_{\mu} = \gamma^\nu##
(1.5.50) ##S=1-\frac{i}{2} \omega_{\mu\nu}\Sigma^{\mu\nu}##
##\gamma^\sigma \omega^\nu_\sigma - \frac{i}{2} \gamma^\sigma \omega_{\alpha\beta} \Sigma^{\alpha\beta} \delta^\nu_\sigma = - \frac{i}{2}\omega_{\alpha\beta} \Sigma^{\alpha\beta} \gamma^\nu##
##\gamma^\sigma \omega^\nu_\sigma - \frac{i}{2} \gamma^\nu \omega_{\alpha\beta} \Sigma^{\alpha\beta} = - \frac{i}{2}\omega_{\alpha\beta} \Sigma^{\alpha\beta} \gamma^\nu##
##\gamma^\sigma \omega^\nu_\sigma = \frac{i}{2} \gamma^\nu \omega_{\alpha\beta} \Sigma^{\alpha\beta} - \frac{i}{2}\omega_{\alpha\beta} \Sigma^{\alpha\beta} \gamma^\nu##
##= \frac{i}{2} (\gamma^\nu \omega_{\alpha\beta} \Sigma^{\alpha\beta} - \omega_{\alpha\beta} \Sigma^{\alpha\beta}) \gamma^\nu##
##= \frac{i}{2} \omega_{\alpha\beta}(\gamma^\nu \Sigma^{\alpha\beta} - \Sigma^{\alpha\beta} \gamma^\nu)##
##\gamma^\sigma \omega^\nu_\sigma= \frac{i}{2} \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
But ## \omega^\nu_\sigma= g ^{\rho\nu} \omega_{\rho\sigma}##
So ##\gamma^\sigma g ^{\rho\nu} \omega_{\rho\sigma}=\frac{i}{2} \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##2\omega_{\alpha \beta} = \omega_{\alpha \beta} - \omega_{\beta \alpha}##
##\gamma^\sigma g ^{\rho\nu} \frac{1}{2}(\omega_{\rho\sigma}-\omega_{\sigma\rho})=\frac{i}{2} \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##-i\gamma^\sigma g ^{\rho\nu} (\omega_{\rho\sigma}-\omega_{\sigma\rho})= \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##-i (g ^{\rho\nu}\gamma^\sigma\omega_{\rho\sigma}-g ^{\rho\nu}\gamma^\sigma\omega_{\sigma\rho})= \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##-i (g ^{\rho\nu}\gamma^\sigma\omega_{\rho\sigma}-g ^{\sigma\nu}\gamma^\rho\omega_{\rho\sigma})= \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##-i (g ^{\rho\nu}\gamma^\sigma-g ^{\sigma\nu}\gamma^\rho)\omega_{\rho\sigma}= \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##-i (g ^{\alpha\nu}\gamma^\beta-g ^{\beta\nu}\gamma^\alpha)\omega_{\alpha\beta}= \omega_{\alpha\beta}[\gamma^\nu, \Sigma^{\alpha\beta}]##
##-i (g ^{\alpha\nu}\gamma^\beta-g ^{\beta\nu}\gamma^\alpha)= [\gamma^\nu, \Sigma^{\alpha\beta}]##
##[\Sigma^{\alpha\beta},\gamma^\nu]=-i(g ^{\beta\nu}\gamma^\alpha - g ^{\alpha\nu}\gamma^\beta)##
##[\Sigma^{\mu\nu},\gamma^\beta]=-i(g ^{\nu\beta}\gamma^\mu - g ^{\mu\beta}\gamma^\nu)##
This is equation (1.5.51) except for the sign.
 
So I redid the math... it is a bit simpler and the sign matches the reference.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 49 ·
2
Replies
49
Views
7K
  • · Replies 3 ·
Replies
3
Views
477
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
956
  • · Replies 1 ·
Replies
1
Views
709
  • · Replies 8 ·
Replies
8
Views
4K