B Transforming the Electric Field Measured by an Observer with 4-velocity U

  • B
  • Thread starter Thread starter etotheipi
  • Start date Start date
Click For Summary
The discussion revolves around transforming the electric field components in Minkowski space using the electromagnetic tensor and the observer's 4-velocity. The initial calculations showed discrepancies when transforming the electric field measured by an observer, indicating a misunderstanding of how to properly evaluate tensor contractions in different coordinate systems. It was clarified that the components of vectors are dependent on the chosen coordinate system, and the observer's measurements must account for this transformation. The conclusion emphasizes the importance of using the correct basis vectors for accurate measurements of the electric field. The participants agree on the necessity of transforming the components to align with the observer's frame for consistency in results.
etotheipi
Hola amigos, I was doing some stuff and got a bit stuck. To transform components of the em tensor between different bases in the minkowski space you can do, just like any other tensor, $$\overline{F}^{\bar{\mu} \bar{\nu}} = \frac{\partial \bar{x}^{\bar{\mu}}}{\partial x^{\mu}} \frac{\partial \bar{x}^{\bar{\nu}}}{\partial x^{\nu}} F^{\mu \nu} = {\Lambda^{\bar{\mu}}}_{\mu}{\Lambda^{\bar{\nu}}}_{\nu} F^{\mu \nu}$$e.g. to transform the ##x^1## component of the electric field, for the traditional case of uniform motion along the ##x^1## direction at ##c\beta \mathbf{e}_1##, then$$\begin{align*}

\overline{E}^{1} = c\overline{F}^{10} = c{\Lambda^{1}}_{\mu} {\Lambda^{0}}_{\nu} F^{\mu \nu} = c{\Lambda^{1}}_{0}{\Lambda^{0}}_{1}F^{01} + c{\Lambda^{1}}_{1}{\Lambda^{0}}_{0}F^{10} + 0 + 0 &= c\beta^2 \gamma^2 \left( -\frac{E^1}{c} \right) + c \gamma^2 \left( \frac{E^1}{c} \right) \\

&= \gamma^2 E^1 (1-\beta^2) = E^1

\end{align*}$$i.e. that ##\overline{E}^1 = E^1##. But then I tried a different method, knowing that the electric field measured by an observer with 4-velocity ##U = \gamma c (\mathbf{e}_0 + \beta \mathbf{e}_1) = c\overline{\mathbf{e}}_0## should be the contraction of the em tensor and the 4-velocity of the observer, i.e. the resulting rank 1 tensor (vector) with one empty slot has spatial components ##{E_U}^i = F^{i\nu} U_{\nu}##. However, when I tried to work this out [for the same scenario as before, with the ##\{ \overline{\mathbf{e}}_{i} \}## coordinate system moving at ##c\beta \mathbf{e}_1## w.r.t. the ##\{ \mathbf{e}_{i} \}## coordinate system], I get$$(E_U)^1 = F^{10} U_0 + F^{11}U_1 = \left( \frac{E^1}{c} \right) \gamma c + 0 = \gamma E^1$$which is different to what I got before. But I don't see why it shouldn't work, because when I evaluate the same contraction in the other coordinate system, I get$$(\overline{E_U})^1 = \overline{F}^{1\nu} \overline{U}_{\nu} = \overline{F}^{1 0} \overline{U}_{0} + 0+ 0 + 0 = \left( \frac{\overline{E}^1}{c} \right) c = \overline{E}^1$$which is fine. So I'm wondering, where I made my mistake in evaluating the contraction of those two tensors in the first coordinate system, or maybe something else is wrong. Thank you

Edit: Actually, maybe writing this out helped to pin down the problem. The ##E_U## is still a 4-vector, so it's components will be different in the two coordinate systems. I guess, in that case, we need to transform the components of ##E_U## to the ##\{ \overline{\mathbf{e}}_{\mu} \}## coordinate system in order to get the components ##\mathbf{E}## measured by the guy with four velocity ##U##...
 
Last edited by a moderator:
  • Like
Likes aliens123 and Dale
Physics news on Phys.org
I think you've got it with the edit.

A more coordinate-free way to put it is that the components of vectors are meaningless. What you measure as the "x component of the electric field" is actually the inner product of the electric field with a unit vector in the x direction. So what your observer with four velocity ##U## measures (the quantity you called ##\overline{ E}^1##) is ##\overline{e}_{(1)}^\mu U^\nu F_{\mu\nu}##, where ##\overline e_{(1)}## is the observer's first spacelike basis vector. Since ##\overline e_{(1)}## isn't (0,1,0,0) in your unbarred coordinates, ##\overline e_{(1)}^\mu U^\nu F_{\mu\nu}\neq U^\nu F_{1\nu}##.
 
Last edited:
  • Like
  • Love
Likes aliens123, PeterDonis and etotheipi
@Ibix thanks, that's a really great way of explaining it, it's clear to me now. 😄 I do like the geometrical point of view a lot. Maybe I'll check the transformation later, but I'm pretty sure it'll work as expected.
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...