Jimmy87 said:
Homework Statement
Please see circuit diagram attached which I am struggling to understand. The question is: explain in detail the action of the circuit as VA changes from –5.0V to +5.0V. I have looked through my textbook and I can see that when VA reaches +5V the base of the transistor switches it on but I have little understanding of what is going on. Why does the transistor not work when the base is at -5V? Also, when the base is at +5V I don't understand how current can flow up to the relay because the voltage at the top of the circuit is also at +5V?
Homework Equations
None
The Attempt at a Solution
Tried looking through relevant sections in textbook
It's been many years since I dabbled in electronics. So I'll give it a go because no one else has answered, but more experienced posters will likely chip in and correct my errors.
That's an NPN bipolar junction transistor. Your text should have a detailed chapter on how these work talking about semiconductor doping, the charge carriers (predominantly electrons in this case) and what happens at the base, collector and emitter. You should have something about diodes before this, and it's essential to understand how diodes work to get how transistors work. So review that.
Here the transistor is being used as a switch. The transistor "switches on" when the voltage between base and emitter goes above a certain threshold value. That value is usually +0.6V in a silicon transistor. The positive value indicates the base is at a higher potential than the emitter (which is held at ground, or 0V) because this is the switching condition for an NPN transistor. The reverse would be the case for a PNP transistor, when the base has to be at a lower potential than the emitter to switch on.
So at some point during the transition of ##V_A## from -5V to +5V (which happens quickly in a switching application), the transistor gets switched on. There will be a current flowing between base and emitter. This will be amplified into a much larger flow of current between collector and emitter, because transistors amplify current. Think of the base-emitter junction as an input diode. When it gets positive biased above +0.6V it acts to turn on an output diode (the collector-emitter junction) and allows a (greater) current to flow through the output than was fed into the input.
The transistor will not switch on when ##V_A## is at -5V because the base is clearly at a lower potential than the emitter. It will only switch on when ##V_A## is some positive value high enough that the base-emitter potential is at or above +0.6V.
Anyway, when the transistor is switched on, the output resistance (which was initially very high, infinite in the ideal case) suddenly goes very low (zero in the ideal case). This draws current from the positive voltage source (+5V) through the inductance, activating the relay.
The diode in parallel with the inductance is known as a kickback or protective diode, and its sole function is to protect the collector from a very high voltage that may develop across the inductance when the transistor switches off. This is because of a basic property of an inductor that causes them to resist changes in current. You can read more about this in your text. The diode is reverse-biased when the transistor is on but the moment it goes off and the inductor develops a high potential at the point connected to the collector, the diode is in forward bias and shorts out the inductor, protecting the collector of the transistor.