Transport Processes problem regarding viscosity/fluid flow and energy.

AI Thread Summary
The discussion revolves around calculating the pressure increase required by pumping stations in the Trans-Alaska Pipeline System to maintain oil flow, as well as the energy needed for this process. The user successfully derived the pressure increase needed per pump using the Hagen-Poiseuille Law, resulting in approximately 65.2 bar. They also calculated the total power required for all eleven pumps to be about 4980.46 MW. Furthermore, they determined that approximately 0.199% of the total flow rate must be burned to generate sufficient energy from oil to power the pumps. The user seeks confirmation on the accuracy of their calculations.
nefizseal
Messages
4
Reaction score
0
Hey guys, there is this superhard question (atleast for me). I've been trying at it for days but I seem to get nowhere.


The Trans-Alaska Pipeline System (TAPS) carries around 100,000m3 of oil per day from the Northern Alaskan oil fields to the nearest ice-free port of Valdez, around 1300km away. The pipe has an outer diameter of 1.22m and a wall thickness of 12mm. Eleven pumping stations are used along the total length of the pipeline to transport the oil.

Note: Assume that the pumping stations are equally spaced along the pipeline, that the pipe is roughly straight and horizontal, and that the flow with the pipe is laminar, Newtonian and steady-state. Also assume that the pumps are 100% efficient so that all energy consumed by the pumps is dissipated by the fluid. The density and kinematic viscosity of the oil are (rho)=890 kg/m3 and (nu)= 7.17 x 10-4 m2 /s respectively.


(a) Starting from first principles, estimate the pressure increase that must be generated by each of the eleven pumping stations to maintain the flow.


(b) The rate that energy is dissipated D(W) by a fluid when it flows through a horizontal pipe under the influence of a pressure difference is given by

D = (delta)P x Q

where (delta)P is the difference in pressure between the inlet and outlet to the pipe (Pa), and Q is the volumetric flowrate through the pipe (m3/s). How much power (rate of energy use) is required to maintain the flowrate of oil through the entire pipeline?

If oil is burned to power the pumps, and 3.6 x 104 MJ of energy can be harnessed from burning 1 m3 of oil, what percentage of the total flowrate needs to be burnt to maintain the flow?
 
Engineering news on Phys.org
Well here is what I have done so far (which isn't much to be honest)


I know that the density is 890 kg/m3 and I also know that the kinametic viscosity is 1.17 x 10-4 m2/s


I know from basic principles that kinametic visc. = viscosity/ density

So I can get, absolute viscosity = density x kinametic visc.

So my absolute viscocity comes to 0.638 Pa s = (mu)


I don't exactly know what to do from here. I mean, they said how much pressure do I need to maintain flow. But then there are 11 pumps, do I divide something by 11 1st and then get it and what do I do? Will I need the measurements of the pipe for it?

I don't really want the answer as much as I would want someone to tell me what to do?

And I am completely clueless about the 2nd part...I mean I can solve the whole differential equation thing to get Vx, Vmax, Q etc. for a general flow in a cylindrical pipe, but I don't know what exactly I should do...

Thanks
 
Actually, I got the answer to the first part. It was pretty easy. Just had to solve the equation for the Horizontal pipe. Can someone help me with part B? COME ON MAN!
 
Given :
Q = 100,000 m3/day * 1 day/24 h * 1 h/60 s = 69.444 m3/s
OD = 1.22 m , ID = 1.196 m , Lt = 1300 000 m , Laminar flow
L = 1300 000 m/11 = 118182 m
µ = 0.638 Pa.s , ρ =890 Kg/m3


Starting from first principles, estimate the pressure increase that must be generated by each of the eleven pumping stations to maintain the flow.

from Hagen-Poiseuille Law can be rephrased as :
Q = π*ID4*(-ΔP)/(8*µ*L)
-ΔP = 8*Q*µ*L/ (π*ID4)
 ΔP = 8*69.444*0.638*118182/(3.14*1.196^4) = 6519921.438 Pa = 65.2 bar

The rate that energy is dissipated D(W) by a fluid when it flows through a horizontal pipe under the influence of a pressure difference is given by
D = (delta)P x Q
D= 6519921.438 * 69.444 = 452.769424 MW

How much power (rate of energy use) is required to maintain the flowrate of oil through the entire pipeline?

power for pump = Q*ΔP
since we have 11 pumps then
Total Power = 11* 6519921.438 * 69.444 = 4980.4637 MW

If oil is burned to power the pumps, and 3.6 x 104 MJ of energy can be harnessed from burning 1 m3 of oil, what percentage of the total flowrate needs to be burnt to maintain the flow?

(4980.4637 M J/s needed)/(3.6 x 10^4 MJ/m^3 provided) ==0.1383 m^3/s

so 0.1383 m3/s of oil have to be burn to provide enough energy for pumps.

% of flow needed to be burned = 0.1383/69.444 *100 = 0.199 %

Please let me know If you find that my answer is wrong .
 
Hello! I've been brainstorming on how to prevent a lot of ferrofluid droplets that are in the same container. This is for an art idea that I have (I absolutely love it when science and art come together) where I want it to look like a murmuration of starlings. Here's a link of what they look like: How could I make this happen? The only way I can think of to achieve the desired effect is to have varying droplet sizes of ferrofluid suspended in a clear viscous liquid. Im hoping for the...
Hello everyone! I am curious to learn how laboratories handle in-house chip manufacturing using soft lithography for microfluidics research. In the lab where I worked, only the mask for lithography was made by an external company, whereas the mold and chip fabrication were carried out by us. The process of making PDMS chips required around 30 min–1 h of manual work between prepolymer casting, punching/cutting, and plasma bonding. However, the total time required to make them was around 4...
Back
Top