mrbill
- 6
- 0
Hey guys, I got a little problem for you involving trig integration. I have listed my work below. My question is...well...the back of the book has a csc^2 (2x) in the absolute value at the end of the problem..and i can't even begin to fathom where they got it from. Here is the work..ill point out the disagreement from the answer key below
\int cot^3 (2x)dx
\int cot^2 (2x) cot (2x)dx
\int (csc^2 (2x) -1)cot (2x)dx
\int (csc^2 (2x) cot (2x) - cot (2x))dx
\int csc^2 (2x) cot (2x)dx - \int cot (2x)dx
u=cot (2x)
du= -2csc^2 (2x)dx
\frac{-1}{2}du=csc^2 (2x)dx
\frac{-1}{2} \int udu
= \frac{1}{2}u^2
= \frac{-1}{4}cot^2 (2x)
u=2x
du=2dx
\frac{1}{2}du = dx
= \frac {1}{2} \ln | \sin (2x) |
rewrite and move the negative to an exponent using properties of natural log..its stupid but that's how the textbook has the answer
\frac{-1}{4} cot^2 (2x) + \frac{1}{2} \ln (sin (2x))^-1
switch them around so the negative isn't sticking out in front
rewrote inverse sin as csc and factored out 1/4
\frac{1}{4}(2 \ln |csc (2x) | - cot^2 (2x))
Heres the problem: the book writes it as:
\frac{1}{4}(2 \ln |csc^2 (2x) | - cot^2 (2x))
notice the csc^2 up there...cant figure it out!
mrbill
\int cot^3 (2x)dx
\int cot^2 (2x) cot (2x)dx
\int (csc^2 (2x) -1)cot (2x)dx
\int (csc^2 (2x) cot (2x) - cot (2x))dx
\int csc^2 (2x) cot (2x)dx - \int cot (2x)dx
u=cot (2x)
du= -2csc^2 (2x)dx
\frac{-1}{2}du=csc^2 (2x)dx
\frac{-1}{2} \int udu
= \frac{1}{2}u^2
= \frac{-1}{4}cot^2 (2x)
u=2x
du=2dx
\frac{1}{2}du = dx
= \frac {1}{2} \ln | \sin (2x) |
rewrite and move the negative to an exponent using properties of natural log..its stupid but that's how the textbook has the answer
\frac{-1}{4} cot^2 (2x) + \frac{1}{2} \ln (sin (2x))^-1
switch them around so the negative isn't sticking out in front
rewrote inverse sin as csc and factored out 1/4
\frac{1}{4}(2 \ln |csc (2x) | - cot^2 (2x))
Heres the problem: the book writes it as:
\frac{1}{4}(2 \ln |csc^2 (2x) | - cot^2 (2x))
notice the csc^2 up there...cant figure it out!
mrbill