dimension10
- 371
- 0
1.
\sin \theta = \cos \theta
\theta=\frac{\pi}{4}
2.
\sin \theta = \tan \theta
\theta = 0
3.
\cos \theta = \tan \theta
\theta =\arcsin (\varphi -1)
4.
\sin \theta = \csc \theta
\theta = \frac{\pi}{2}
5.
\sin \theta =\sec \theta
\theta does not exist.
6.
\sin \theta =\cot \theta
\theta = \arccos (\varphi -1)
7.
\cos \theta =\csc \theta
\theta does not exist.
8.
\cos \theta =\sec \theta
\theta=0
9.
\cos \theta = \cot \theta
\theta=\frac{\pi}{2}
10.
\tan \theta =\csc \theta
\theta =\arccos(\varphi-1)
11.
\tan \theta = \sec \theta\theta=\frac{\pi}{2}
12.
\tan \theta = \cot \theta
\theta=\frac{\pi}{4}13.
\csc \theta =\sec \theta
\theta=\frac{\pi}{4}
14.
\csc \theta =\cot \theta
\theta = \arccos (\varphi -1)
15.
\sec \theta =\cot \theta
\theta=\arcsin (\varphi - 1)
I used quadratic equation for some equalities. Which showed that the golden ration was involved. But my question is "geometrically, why?"
\sin \theta = \cos \theta
\theta=\frac{\pi}{4}
2.
\sin \theta = \tan \theta
\theta = 0
3.
\cos \theta = \tan \theta
\theta =\arcsin (\varphi -1)
4.
\sin \theta = \csc \theta
\theta = \frac{\pi}{2}
5.
\sin \theta =\sec \theta
\theta does not exist.
6.
\sin \theta =\cot \theta
\theta = \arccos (\varphi -1)
7.
\cos \theta =\csc \theta
\theta does not exist.
8.
\cos \theta =\sec \theta
\theta=0
9.
\cos \theta = \cot \theta
\theta=\frac{\pi}{2}
10.
\tan \theta =\csc \theta
\theta =\arccos(\varphi-1)
11.
\tan \theta = \sec \theta\theta=\frac{\pi}{2}
12.
\tan \theta = \cot \theta
\theta=\frac{\pi}{4}13.
\csc \theta =\sec \theta
\theta=\frac{\pi}{4}
14.
\csc \theta =\cot \theta
\theta = \arccos (\varphi -1)
15.
\sec \theta =\cot \theta
\theta=\arcsin (\varphi - 1)
I used quadratic equation for some equalities. Which showed that the golden ration was involved. But my question is "geometrically, why?"