Trigonometric Polynomial Form: How Does the +1 Factor Fit in T_n(x)?

quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32

Homework Statement


Maybe I'm just blind, but how is

T_n(x)=\left(\frac{1+\cos(t-a)}{b}\right)^n

of the form

T_n(x)=\sum_{k=-n}^nc_ke^{ikx}

?

I can get

\left(\frac{\cos(t-a)}{b}\right)^n

by setting

c_{\pm n}=\left(\frac{e^{\mp ia}}{2b}\right)^n

and the rest of the c_k= 0, but how does the +1 comes in?
 
Last edited:
Physics news on Phys.org
](1+ a)^n= 1+ a+ _nC_2a^2+ ...+ a^{n-1}+ a^n[/itex] by the binomial theorem. Now use what you give to write each term as an exponential.
 
Ah!

----------
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top