What is the value of n in the identity sin^3xsin3x=\sum^n_{m=0}{}^nC_mcosmx?

AI Thread Summary
The discussion revolves around finding the value of n in the identity sin^3x sin 3x = ∑^n_{m=0} C_m cos mx. Participants clarify the correct form of the identity and suggest using trigonometric identities to simplify the expression. The conversation highlights the importance of breaking down sin 3x and sin^3 x into cosine terms to match the sum format. Ultimately, the focus is on expressing the left-hand side in terms of cosines to determine the maximum value of n. The final consensus is that the problem requires identifying the highest cosine term present in the expansion.
Saitama
Messages
4,244
Reaction score
93

Homework Statement


Suppose sin^3xsin3x=\sum^n_{m=0}{}^nC_mcosmx is an identity in x, where C0, C1, ...Cn are constants, and Cn \neq0, then what is the value of n?


Homework Equations





The Attempt at a Solution


I expanded the sigma notation and got:-
sin^3xsin3x={}^nC_0cos0+{}^nC_1cosx+{}^nC_2cos2x...
I wasn't able to think what should i do next?
Please help!

Thanks!:smile:
 
Physics news on Phys.org
Hi Pranav-Arora! :smile:
Pranav-Arora said:
Suppose sin^3xsin3x=\sum^n_{m=0}{}^nC_mcosmx is an identity in x …

That doesn't look right :confused:

shouldn't that be sin^3xsin3x=\sum^n_{m=0}C_mcosmx ?
 
tiny-tim said:
Hi Pranav-Arora! :smile:


That doesn't look right :confused:

shouldn't that be sin^3xsin3x=\sum^n_{m=0}C_mcosmx ?

Yep, you're right. :smile:
In my book too, it is of the same form. I thought adding a "n" before "C" wouldn't make any difference.
 
Pranav-Arora said:
I thought adding a "n" before "C" wouldn't make any difference.

No, nCm means the binomial coefficient n!/m!(n-m)!, with ∑nCmxmyn-m = (x+y)n.

Anyway, use standard trigonometric identities to write sin3x and sin3x in terms of cosx cos2x cos3x etc. :smile:
 
tiny-tim said:
No, nCm means the binomial coefficient n!/m!(n-m)!, with ∑nCmxmyn-m = (x+y)n.

Anyway, use standard trigonometric identities to write sin3x and sin3x in terms of cosx cos2x cos3x etc. :smile:

Which identity should i use? :confused:
 
Try sin2x + cos2x = 1 to help break-down sin3x .

Write sin(3x) as sin(x + 2x) and use angle addition for the sine function.

Then see what the result is & proceed further.
 
SammyS said:
Try sin2x + cos2x = 1 to help break-down sin3x .

Write sin(3x) as sin(x + 2x) and use angle addition for the sine function.

Then see what the result is & proceed further.

I got:-
(\sqrt{1-cos^2x})^3(sinxcos2x+sin2xcosx)

Am i right? What should i do next?
 
Hi Pranav-Arora! :smile:

Let's not go into roots and stuff.
That way the expression becomes more complex and starts looking less like a sum of cosines.

I think SammyS intended you to split (\sin^3 x) into (\sin^2 x \sin x) and only apply the squared sum formula to the first part.

Furthermore, can you break up sin(2x) further?
 
I like Serena said:
Hi Pranav-Arora! :smile:

Let's not go into roots and stuff.
That way the expression becomes more complex and starts looking less like a sum of cosines.

I think SammyS intended you to split the sin3x into sin2x sin x and only apply the squared sum formula to the first part.

Furthermore, can you break up sin(2x) further?

Hi I like Serena! :smile:
I did it as you said and got:-
(1-cos^2x)(sinx)(sinxcos2x+2sinxcos^2x)
Am i right now..?
 
  • #10
Yep! :)
Now get rid of the round thingies...
 
  • #11
I like Serena said:
Yep! :)
Now get rid of the round thingies...

How?? :confused:
I still have a "cos2x".
 
  • #12
Pranav-Arora said:
How?? :confused:
I still have a "cos2x".

Yes, and you want to keep that, since it matches the cosine expression you're working towards.
I meant doing stuff like a(b + c) = ab + ac

And actually, now that I think about it, the squared sum formula does not really help you forward.
What you need is the cos 2x = 2cos2x - 1 and cos 2x = 1 - 2sin2x formulas, or rather use them the other way around.
That is, cos2 x = (cos 2x + 1)/2.
 
  • #13
I like Serena said:
Yes, and you want to keep that, since it matches the cosine expression you're working towards.
I meant doing stuff like a(b + c) = ab + ac

And actually, now that I think about it, the squared sum formula does not really help you forward.
What you need is the cos 2x = 2cos2x - 1 and cos 2x = 1 - 2sin2x formulas, or rather use them the other way around.
That is, cos2 x = (cos 2x + 1)/2.

Should i substitute cos2x = (cos 2x + 1)/2 in this:-
(1-cos^2x)(sinx)(sinxcos2x+2sinxcos^2x)
Or should i go from start again?
 
  • #14
At this stage it doesn't matter much.
 
  • #15
I tried solving it and got:-
(\frac{1-cos2x}{2})^2(2cos2x+1)
Now i am stuck. :confused:
 
  • #16
Multiply the round thingies away?
 
  • #17
I like Serena said:
Multiply the round thingies away?

Multiplied and it resulted to be:-
\frac{4cos2x-2cos^32x+3cos^22x+1}{4}
Now what should i do? :confused:
 
  • #18
Well, isn't it starting to look more and more like your intended expression?
Which is:
C0 + C1 cos x + C2 cos 2x + C3 cos 3x + ...

You need to get rid of the remaining square and third power, and try and replace them by cos mx forms...
Any thoughts on which formulas to use for that?
 
  • #19
I like Serena said:
Well, isn't it starting to look more and more like your intended expression?
Which is:
C0 + C1 cos x + C2 cos 2x + C3 cos 3x + ...

You need to get rid of the remaining square and third power, and try and replace them by cos mx forms...

How can i get rid of the powers?
 
  • #20
A couple of posts ago you replaced a square by some cos mx form.
Do it again?

As for the third power, perhaps you need to get some inspiration from what cos 3x would look like if you reduced it to squares and other powers.
What does it look like?
 
  • #21
I like Serena said:
A couple of posts ago you replaced a square by some cos mx form.
Do it again?

I didn't get it! :confused:

I like Serena said:
As for the third power, perhaps you need to get some inspiration from what cos 3x would look like if you reduced it to squares and other powers.
What does it look like?

I know cos3x = 4cos3x-3cos x. But what is its use in this question?
 
  • #22
Pranav-Arora said:
I didn't get it! :confused:

You used cos2x = (cos 2x + 1)/2
So what would cos22x be?


Pranav-Arora said:
I know cos3x = 4cos3x-3cos x. But what is its use in this question?

That's the one. :)
Turn it around expressing the third power into cos mx thingies?
That is, what is cos3x?
 
  • #23
I like Serena said:
You used cos2x = (cos 2x + 1)/2
So what would cos22x be?

cos^22x=\frac{cos4x+1}{2}
Right..?

I like Serena said:
That's the one. :)
Turn it around expressing the third power into cos mx thingies?
That is, what is cos3x?

cos^3x=\frac{cos3x+3cosx}{4}

Now what sholud i do? :confused:
 
  • #24
Pranav-Arora said:
Multiplied and it resulted to be:-
\frac{4cos2x-2cos^32x+3cos^22x+1}{4}
Now what should i do? :confused:
cos2(θ) = (cos(2θ) + 1)/2 . So, cos2(2x) = ?

Use that in the obvious place and also after splitting up cos3(2x) → cos2(2x) * cos(2x) .

I would then use the product to sum identity to split up cos(4x) cos(2x).

2 cos(A) cos(B) = cos(A+B) cos(A-B)

Added in Edit:

What you just did is fine.

Now just put your results together.
 
  • #25
Substitute...?
 
  • #26
I like Serena said:
Substitute...?

Substituting, i get:-
\frac{8cos2x-cos3x-3cosx+3cos4x+5}{8}
Right..? What's next? :)
 
  • #27
Right! :smile:
What was the question asked in the problem again?
 
  • #28
Btw, I just used WolframAlpha to check if your current expression is equal to the original expression in the problem, and apparently it isn't.
So I think there is a mistake somewhere.

(Sorry, but I didn't check all your steps individually. :blushing:)
 
  • #29
Pranav-Arora said:
Substituting, i get:-
\frac{8cos2x-cos3x-3cosx+3cos4x+5}{8}
Right..? What's next? :)
I get something different with WolframAlpha. I'm not sure where the problem is.
 
  • #30
(just got up :zzz: …)

the question doesn't ask for the actual expansion, it only asks for the value of n, ie is it up to cos3x, or to cos4x, or …? :wink:
I like Serena said:
Multiply the round thingies away?

erm … they're not round thingies, they're curvey thingies :rolleyes:

don't confuse people! :redface:
 
  • #31
Ok, i did it from beginning.
I have attached my attempts. Please check them and please tell me if i am wrong somewhere.
(Pardon me for my handwriting :biggrin:)

2mpfknp.jpg

iydb7k.jpg
 
  • #32
I found a mistake where you expanded (\frac {1 - \cos 2x} 2)^2.

tiny-tim said:
erm … they're not round thingies, they're curvey thingies :rolleyes:

don't confuse people! :redface:

I stand corrected! That is much less confusing! :biggrin:

Err, but how do you distinguish it from curly thingies?
Aren't those curvey too? :confused:
 
Last edited:
  • #33
I like Serena said:
I found a mistake where you expanded (\frac {1 - cos 2x} 2)^2.

I am very sorry for my foolishness. I would again scan my attempts and post them here.
 
  • #34
Here are my attempts again. :)
Hope they're correct now :redface:

i2ppj8.jpg

20oxt4.jpg
 
  • #35
Pranav-Arora said:
(Pardon me for my handwriting :biggrin:)

I think it's rather good handwriting …

large and clear :approve:

(except I think the "4" should be more angular :wink:)
I like Serena said:
Err, but how do you distinguish it from curly thingies?
Aren't those curvey too? :confused:

chunky: []

curvey: ()

curly: {}

pointy: <> :smile:
 
  • #36
tiny-tim said:
I think it's rather good handwriting …

large and clear :approve:

(except I think the "4" should be more angular :wink:) chunky: []

curvey: ()

curly: {}

pointy: <> :smile:

Thanks for appreciating my handwriting. :biggrin:

But are my attempts correct? :smile:
 
  • #37
hmm :redface:

i'm reluctant to go through all that and check it …

you seem to have started by making it more complicated

i'd have started by using the basic https://www.physicsforums.com/library.php?do=view_item&itemid=18" to get formulas like

2sinxsin3x = cos(3x - x) - cos(3x + x) = cos2x - cos4x

isn't that simpler? :wink:

try that :smile:
 
Last edited by a moderator:
  • #38
I am correcting my attempts after \frac{2cos^32x-3cos^22x+1}{4} :smile:

\frac{2cos^32x-3cos^22x+1}{4}=\frac{2(\frac{cos6x+3cos2x}{4})-3(\frac{cos4x+1}{2})+1}{4}=\frac{(\frac{cos6x+3cos2x}{2})-3(\frac{cos4x+1}{2})+1}{4}=\frac{cos6x+3cos2x-3cos4x-1}{8}
 
  • #39
tiny-tim said:
hmm :redface:

i'm reluctant to go through all that and check it …

you seem to have started by making it more complicated

i'd have started by using the basic https://www.physicsforums.com/library.php?do=view_item&itemid=18" to get formulas like

2sinxsin3x = cos(3x - x) - cos(3x + x) = cos2x - cos4x

isn't that simpler? :wink:

try that :smile:

Wow! :
I tried that way, it was much simpler. Thank you!
But what should i do next? :confused:

I get:-
\frac{cos6x+3cos2x-3cos4x-1}{8}
 
Last edited by a moderator:
  • #40
Pranav-Arora said:
I tried that way, it was much simpler.

he he :biggrin:

now use a similar formula for sinxcos(something), to use up one more sinx

the use up the final sinx with a coscos formula again :wink:

(oh, and yes i get the same final result as you do! :smile:

and to make sure :rolleyes: I checked it by putting x = 0 and π/2)

btw, have you done complex numbers yet?

if so, try using https://www.physicsforums.com/library.php?do=view_item&itemid=162" to rewrite the answer as a binomial expansion :wink:
 
Last edited by a moderator:
  • #41
tiny-tim said:
he he :biggrin:

now use a similar formula for sinxcos(something), to use up one more sinx

the use up the final sinx with a coscos formula again :wink:

(oh, and yes i get the same final result as you do! :smile:

and to make sure :rolleyes: I checked it by putting x = 0 and π/2)

btw, have you done complex numbers yet?

if so use https://www.physicsforums.com/library.php?do=view_item&itemid=162" to rewrite the answer as a binomial expansion :wink:


Here's no more sine now.:confused:

And i haven't done complex numbers yet. :frown:
 
Last edited by a moderator:
  • #42
Pranav-Arora said:
Here's no more sine now.:confused:

yes there is …

you started with sin3xsin3x = sinx(sinx(sinxsin3x))), and the first step was to expand the sinxsin3x,

so now you use up the middle sinx, and when you've done that you use up the left-hand sinx :wink:
And i haven't done complex numbers yet. :frown:


doesn't matter, you don't need them
 
  • #43
tiny-tim said:
yes there is …

you started with sin3xsin3x = sinx(sinx(sinxsin3x))), and the first step was to expand the sinxsin3x,

so now you use up the middle sinx, and when you've done that you use up the left-hand sinx :wink:


doesn't matter, you don't need them


No, there's no sin x.
I started with (sin2x)(sinxsin3x).
As you said 2sinxsin3x = cos(3x - x) - cos(3x + x) = cos2x - cos4x. I used this same process and at the place of "sinxsin3x" i wrote \frac{cos2x-cos4x}{2}. Then i was left with sin2x. I expanded this left over sin2x, solved the whole equation and got:-
\frac{cos6x+3cos2x-3cos4x-1}{8}
 
  • #44
oh I see!

I thought you hadn't done those extra steps, and you were just repeating the answer you got by your original method, and you were asking how to get there, because you asked "What should I do next?"

you do nothing next, that is the answer, isn't it? :smile:
 
  • #45
tiny-tim said:
oh I see!

I thought you hadn't done those extra steps, and you were just repeating the answer you got by your original method, and you were asking how to get there, because you asked "What should I do next?"

you do nothing next, that is the answer, isn't it? :smile:

No, i still have to find the value of n :smile:
 
Last edited:
  • #46
Nooo …

you have to find the value of n :smile:

which is of course 6 :wink:
 
  • #47
tiny-tim said:
Nooo …

you have to find the value of n :smile:

which is of course 6 :wink:

Yes, i have to find the value of n, but how do you get 6?
 
  • #48
i think you've lost the plot :biggrin:

the original question (with that wrong "n" removed) was …
Pranav-Arora said:
Suppose sin^3xsin3x=\sum^n_{m=0}C_mcosmx is an identity in x, where C0, C1, ...Cn are constants, and Cn \neq0, then what is the value of n?

your answer is (cos6x -3cos4x +3cos2x - 1)/8,

which is ∑ Cmcosmx with C6 = 1/8, C4 = -3/8, C2 = 3/8, C0 = -1/8 :wink:
 
  • #49
tiny-tim said:
your answer is (cos6x -3cos4x +3cos2x - 1)/8,

which is ∑ Cmcosmx with C6 = 1/8, C4 = -3/8, C2 = 3/8, C0 = 1/8 :wink:

I still don't get it...:confused::cry:
 
  • #50
"∑ Cmcosmx" is another way of writing

C0cos0x + C1cosx + C2cos2x + C3cos3x + ...

(with each C being an ordinary number)

do you see that?​
 
Back
Top