Trouble Verifying Identity: Any Advice Welcome

  • Thread starter Thread starter powp
  • Start date Start date
  • Tags Tags
    Identity Welcome
powp
Messages
91
Reaction score
0
Hello All

I am having problems Verifying this identity

(COS A) / (1-SIN A) = SEC A + TAN A

I can get the RHS = (1 + SIN A)/COS A

But this does not equal the LHS

Any advice is welcome.

THanks
 
Mathematics news on Phys.org
yes, you are right, now cross-multiply:

cos^2 a = (1 + sin a) (1 - sin a)
cos^2 a = 1 - sin^2 a
sin^2 a + cos^2 a = 1
 
sec A + tan A = (1/cosA) + sinA/cosA = (cosA + sinA*cosA)/(cosA)^2 =

cosA(1 + sinA)/(1-sin^2A) = cos A / (1 + sinA) :cool:
 
does sin^2 a + cos^2 a = 1 verify the idenity?
 
Divide the LHS top and bottom by cos A:

\frac{\cos A}{1-\sin A} = \frac{1}{\sec A - \tan A}
=\frac{1}{(\sec A - \tan A)}\frac{(\sec A + \tan A)}{(\sec A + \tan A)}
=\frac{\sec A + \tan A}{\sec^2 A - \tan^2 A}

But

\sec^2 A - \tan^2 A = \frac{1 - \sin^2 A}{\cos^2 A} = 1

So, the result follows.
 
powp said:
Hello All

I am having problems Verifying this identity

(COS A) / (1-SIN A) = SEC A + TAN A

I can get the RHS = (1 + SIN A)/COS A

But this does not equal the LHS

Any advice is welcome.

THanks

Yes, it does: (1+ sin A)/cos A= 1/cos A+ sin A/cos A= sec A+ tan A.
 
Thanks All Still kind of confused.

HallsofIvy: doesn't that just change back the RHS that I did??
 
powp:

Does this help?

\frac{1 + \sin A}{\cos A} = \frac{(1 + \sin A)(1 - \sin A)}{\cos A(1 - \sin A)}

=\frac{1 - \sin^2 A}{\cos A (1 - \sin A)}

= \frac{\cos^2 A}{\cos A (1 - \sin A)}

= \frac{\cos A}{1- \sin A}
 
powp said:
does sin^2 a + cos^2 a = 1 verify the idenity?

Yes that is perhaps the most fundamental of all trig identities. It's actually just Pythagoras Thm for a RHT with unit length hypotemus.
 
  • #10
Is this correct??

Hello All

I need to find all solutions to the following did i do it correct?

Sin 2x = 2Tan 2x

2Sinx Cosx = 2(2Tanx / 1-Tan^2x)

Sinx Cosx = (2(Sinx / Cosx)/(cos^2x-Sin^2x / Cos^2x))

Sinx Cosx = 2(Sinx / Cosx) X (Cos^2x / cos^2x-Sin^2x)

Cosx = 2 (Cosx / Cos^2x - Sin^2x)

1 = (2 / Cos^2x - Sin^2x)

Cos^2x - Sin^2x = 2

1 - Sinx^2 - Sin^2x = 2

2Sin^2x = -1
Sin^2x = -1/2

Sinx = -1/SQROOT(2)



Is this correct??
 

Similar threads

Back
Top