Number Nine said:
Well, you should. As has been clearly explained to you, sin has no expression in term of elementary algebraic operations. Trying to square the circle is not noble, just futile.
This is supposed to be a learning exercise ;)
Bob S said:
Here is another way. Do you remember the Pythagorean theorem? A2 + B2 = C2, where C is the hypotenouse, and A is close to the origin?
Choose C=1, and using the angle between A and C, slowly increase the angle from 0 to 90 (or 180) degrees. The length of B is equal to the sine of the angle.
I've played with pythagorea's but realized that would just give me a function of y for a given x when the Sine curve is based on a value for y based on the length of the radian created on a unit circle. Could play around with deformations and such with pythagorea's but I thought I would try something else first.
The formula for calculating the area of a partially filled circle is based on a value for θ while the formula for the area of a partially filled sphere is based on a value for our y. If I can convert the first formula into 3 dimensions while preserving θ I could try to pull out what we need from the two by setting them equal to each other.
Here is what I have so far:
∏ x r^2 - ((∏ x r^2/2) + (∏ x r^2(2(θ/ 2 x Pi)) + (sin θ)(cos θ))
It calculates the area of a partially filled circle (at least one that is less than half full lol) with θ being the angle created by the dividing line of the circle to the radius to the top of the segment for the area which we are calculating for. It spits out the right number for area given the restriction above.
Next I wanted to see what took a circle to a sphere so divided (4/3)∏r^3 by ∏r^2 resulting in 4/3r. Unfortunately I can't just take 4/3r and multiply it into the formula above; that would be like taking the area of the circle segment, setting it equal to a smaller circles' area and then calculating for the volume of a sphere of that smaller circles' dimension of radius. Basically useless in most cases.
I noticed that ∏ can be looked at as a constant (2Pi really but that's besides the point). I was thinking I could use a function of 4/3r and the arc length to get my third dimension and get our θ based formula.
Any thoughts, and/or corrections?
Trig is remarkable! :)