Trying to reproduce the energy levels of a molecule from a paper

Click For Summary

Discussion Overview

The discussion revolves around the attempt to reproduce energy levels of a molecule, specifically in the context of a paper related to a PV experiment on BaF. Participants are examining the eigenstates derived from Hamiltonian equations and comparing their results with published figures.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant describes their approach to obtaining eigenstates from the Hamiltonian, detailing the diagonal and off-diagonal elements involved.
  • Another participant notes that the differences between their plot and the published one are minimal, suggesting they are within a 1% range, which aligns with a specific ratio of parameters.
  • Concerns are raised about the absence of a particular state in the published plot that appears in the participant's results, leading to questions about the plotting choices made in the original paper.
  • Participants discuss the magnitude of splitting between different plot lines, estimating differences in MHz and relating these to omitted terms in the calculations.
  • A later reply introduces a tangential question regarding proposed experiments for measuring CP-violation in large magnetic fields, indicating a shift in focus from the main topic.

Areas of Agreement / Disagreement

Participants express differing views on the accuracy of their results compared to the published data, with some suggesting that the discrepancies are minor while others question the completeness of their calculations. The discussion remains unresolved regarding the exact reasons for the differences in energy levels.

Contextual Notes

Participants mention omitted terms in their calculations and the potential impact on results, indicating that the discussion is contingent on these mathematical details and assumptions about the Hamiltonian.

BillKet
Messages
311
Reaction score
30
Hello! This is quite a specific question, so if anyone knows the details I would really appreciate your help (@Twigg ?). I am trying to reproduce figure 1 from this paper (it's for the PV experiment performed on BaF). While I am getting quite close to it, the levels don't fully match (I am attaching below the plot I obtained). What I did was to get the eigenstates of ##H = H_0 + H_Z## from equations 1 and 2. I first got the diagonal element. For ##H_0## these are:

$$BN(N+1)+\gamma m_N m_S + b m_I m_S + \frac{c}{3}m_I m_S$$

where ##m_{I,S,N}## are the projections along the z axis (defined by the magnetic field) of the I, S and N operators (I am ignoring the ##DN^4## as that is negligible for the ##N=0,1## states we are interested in). For the ##H_z##, the diagonal terms are, given that B is along z:

$$-g_\perp\mu_Bm_S B - \frac{1}{3}(g_\parallel-g_\perp)\mu_Bm_SB- g_I\mu_N m_I B - g_{rot}\mu_Nm_N B$$

where I used from the cited literature: ##B = 6473.9588##, ##\gamma = 80.923##, ##b = 66.25## and ##c = 8.2233## (all in MHz). In terms of off-diagonal elements, there are none connecting ##N=1## to ##N=0##, as they have different parities. Within a given N manifold, the terms that matter are the ones connecting states with the same value of ##m_S##, as different values of ##m_S## are suppressed by about ##\frac{\gamma}{B}##. The only terms able to do that come from ##c(I\cdot n)(S \cdot n)## and are given by ##c\frac{\sqrt{2}}{10}m_S## and they are included in the plot below. All the other terms shouldn't matter as they are too small and I think I included all the relevant term. But I can't seem to reproduce their plots. Did I miss any term or miss-calculated something? Any insight would be really appreciated. Thank you!

E_levels_mag_field.png
 
Physics news on Phys.org
BillKet said:
But I can't seem to reproduce their plots.
Looks pretty good to me? Am I missing something? The only differences I can see are at the 1% level or so. This is consistent with ##\gamma/B \approx 0.013##.

Also, can you say which unperturbed state is which plot line?
 
Twigg said:
Looks pretty good to me? Am I missing something? The only differences I can see are at the 1% level or so. This is consistent with ##\gamma/B \approx 0.013##.

Also, can you say which unperturbed state is which plot line?
The levels in my plot should be in the same order, except for the blue-dotted one in my plot, which doesn't appear at all in theirs (not sure if they willingly decide to not plot it). Also the splitting between the continuous blue and dotted red is much bigger in my case, than in theirs.
 
BillKet said:
Also the splitting between the continuous blue and dotted red is much bigger in my case, than in theirs.
It seems different by a few 10's of MHz. Let's say 20 MHz, to be generous. 20 MHz / 6550MHz = 0.3%, consistent with the terms you omitted. I think you nailed it?
 
  • Like
Likes   Reactions: BillKet
Twigg said:
It seems different by a few 10's of MHz. Let's say 20 MHz, to be generous. 20 MHz / 6550MHz = 0.3%, consistent with the terms you omitted. I think you nailed it?
I didn't realize the difference was so small 😅. Not fully related to this, but do you know of any proposed experiments that aim to measure CP-violation using large magnetic fields?
 
BillKet said:
Not fully related to this, but do you know of any proposed experiments that aim to measure CP-violation using large magnetic fields?
I don't, sorry. Sounds hard, from an experimental point of view.
 

Similar threads

Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K