Both of your answers look fine to me.

Congratulations.
However, the
b limit can be also solved by breaking the absolute value, something like this:
Since we have:
|A| = \left\{ \begin{array}{ll} A, & \mbox{if A} \geq 0 \\ -A, & \mbox{if A} < 0 \end{arrray} \right.
\lim_{x \rightarrow 2} x - 3 = -1 < 0, and \lim_{x \rightarrow 2} 3x - 5 = 1 > 0. So, we have:
\lim_{x \rightarrow 2} \frac{|x - 3| - |3x - 5|}{x ^ 2 - 5x + 6} = \lim_{x \rightarrow 2} \frac{(3 - x) - (3x - 5)}{(x - 2)(x - 3)} = \lim_{x \rightarrow 2} \frac{-4x + 8}{(x - 2)(x - 3)} = -4 \lim_{x \rightarrow 2} \frac{x - 2}{(x - 2)(x - 3)} = -4 \lim_{x \rightarrow 2} \frac{1}{(x - 3)} = (-4) (-1) = 4
---------------------
For your third question, it's a one-sided limit, and x tends to 0 from the
negative side; i.e, x should be negative, right?
And, so in the first line, we have:
\lim_{x \rightarrow 0 ^ -} \sqrt{\frac{3}{x} + \frac{4}{x ^ 2} + 5} - \sqrt{\frac{2}{x} + \frac{4}{x ^ 2} + 6} = \lim_{x \rightarrow 0 ^ -} \sqrt{\frac{1}{x ^ 2}} \times (\sqrt{5x ^ 2 + 3x + 4} - \sqrt{6x ^ 2 + 2x + 4}) = \lim_{x \rightarrow 0 ^ -} \left| \frac{1}{x} \right| \times (\sqrt{5x ^ 2 + 3x + 4} - \sqrt{6x ^ 2 + 2x + 4})
Since x < 0, breaking the absolute value, we have:
= - \lim_{x \rightarrow 0 ^ -} \frac{1}{x} \times (\sqrt{5x ^ 2 + 3x + 4} - \sqrt{6x ^ 2 + 2x + 4}) = ..., and from here, you can just do exactly what you did in
a.
Can you get this? :)