Two masses connected by spring, find period of oscillation

Aziza
Messages
189
Reaction score
1

Homework Statement



Two masses are connected by spring and slide freely without friction along horizontal track. What is period of oscillation?

Homework Equations


The Attempt at a Solution



My solution:
let x1 be position of mass 1 (m1) and x2 be position of mass 2 (m2) and L be length of spring in equilibrium.
Then, the total stretch of the spring is x2-x1-L. Also, F1 = -F2. Thus:

m1(x1)'' = -k(x1 - x2 + L)
m2(x2)'' = -k(x2 - x1 - L)

Solving for x2 from first eqn and substituting back into second eqn yield:

\frac{d^2}{dt^2}[\frac{m1 m2}{k}(x1)''+(m1+m2)x1] = 0

I am unsure how to proceed from here, any hints? I would like to just multiply both sides by (dt^2)/d^2 but I am unsure if this is mathematically correct? It does simplify the problem though and gives me right answer...
 
Last edited by a moderator:
Physics news on Phys.org
You should be well aware that ##\frac{d^2}{dt^2}## isn't a fraction.
 
I don't think you really need differential equations for this one, since there is no external force there is a point on the spring that neither stretches nor compresses. on either side of this point is 2 springs with different spring constants, so effectively you have two different oscillators, with the same period.
 
Do you know about reduced mass and how to convert a two-body problem into a one-body problem?
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top