J.F.
- 34
- 0
“Two-spaceship paradox” This solution incorrect
AAPPS Bulletin Vol. 15 No. 5, October 2005
http://www.aapps.org/archive/bulletin/vol15/15-5/15_5_p17p21abs.html
Jong-Ping Hsu
Nobuhiro Suzuki
We demonstrate a resolution to the “two-spaceship paradox” by explicit calculation using coordinate transformations with at least one frame undergoing constant linear acceleration. A metric such as ds2 = (1 + Kx)2dw2—dx2—dy2—dz2 can lead to a coordinate transformation between an inertial frame and a frame moving with a constant linear acceleration. This coordinate transformation reduces to the Lorentz transformation in the limit of zero acceleration.
This solution incorrect!
AAPPS Bulletin Vol. 15 No. 5, October 2005
http://www.aapps.org/archive/bulletin/vol15/15-5/15_5_p17p21abs.html
Jong-Ping Hsu
Nobuhiro Suzuki
We demonstrate a resolution to the “two-spaceship paradox” by explicit calculation using coordinate transformations with at least one frame undergoing constant linear acceleration. A metric such as ds2 = (1 + Kx)2dw2—dx2—dy2—dz2 can lead to a coordinate transformation between an inertial frame and a frame moving with a constant linear acceleration. This coordinate transformation reduces to the Lorentz transformation in the limit of zero acceleration.
This solution incorrect!
Last edited by a moderator: