On the most basic (fundamental) level there are Gauge and Higgs Bosons, Leptons, and Quarks. There are six quarks and six antiquarks. They transform as doublets by generation;
(u/d), (c/s), (t/b)
The first generation contains the up and down quarks, which are eigenstates of isospin (Iz = 1/2). The second generation contains the charm and strange quarks; the charm quark has charmness (C) = 1, and the strange quark has strangeness (S) = -1. The third generation contains the top and bottom quarks; the top quark has topness (T) = 1, and the bottom quark has bottomness (B) = -1. Their antiparticles each have the opposite quark flavor number. One thing to remember here is that the sign of the flavor number will always match the sign of the electrical charge for each quark/antiquark. The u, c, and t quarks all carry charge of +2/3, and the d,s, and b quarks all carry charge of -1/3, while the antiparticles of each carries a charge equal in magnitude and opposite in sign.
There are also six leptons and six antileptons. They also transform as doublets by generation;
(e/v~e), (mu/v~mu), (tau/v~tau)
The first generation includes the electron and the electron-neutrino which are eigenstates of isospin (Iz = 1/2). The second generation contains the muon and muon-neutrino, and the third generation contains the tau and tau-neutrino. The second and third generation are not eigenstates of isospin, just as the second and third generations of quarks were not eigenstates of isospin, either. The electron, muon and tau each carry an electric charge of -1, while their antiparticles carry the opposite charge. Neutrinos are electrically neutral.
The Gauge Bosons are divided into groups corresponding to the forces they mediate. For the weak force, these are the spin triplet members W-, W+, and Z. The charged triplet members interact in a fashion that changes flavor or isospin (hence they must carry charge), while the neutral member interacts only in quark pair annihilation and production. For the electromagnetic force, the photon is the mediating boson, coupling only to charged particles without changing their charge. For the strong force, the gluon is the mediating boson, exchanging color charges between quarks (and thus carrying the color charges themselves). For gravitation there is no known interacting particle, but in theory the graviton may be the mediating boson there. Gravitons should interact with any particle that has mass or energy, in other words all particles, without changing the mass of anything. While all of the other Guage Bosons are spin-1 (vector) particles, the graviton is a spin-2 (tensor) particle, if it exists.
The Higgs Bosons, which assign mass to particles by creating a vacuum potential with interacting Higgs fields, are H+, H-, and H0. H0 is a scalar particle, and is the base cause for the symmetry breaking of the SU(2)xU(1) electroweak interaction into the U(1) electromagnetic interaction (by assigning mass to Gauge Bosons). The Higgs bosons assign the masses of each of the fundamental particles.
From the leptons and quarks (which are fermions) we can create all the other matter that we see in existence. On the subatomic level, bound states of a quark and antiquark are called mesons (having integer spin), and bound states of three quarks are called baryons (having half-integer spin). The antiparticles of baryons are antibaryons (three antiquarks), while the antiparticles of mesons are also mesons (some are even identical). The current spectroscopy of mesons contains perhaps 100 known states, while the current spectroscopy of the baryons contains at least the same number so far; both have the potential for an infinite number of combinations of quantum numbers, hence a continuum of ever-increasing energy resonances.