Uncertainties propagation for area of a rectangle

Click For Summary

Homework Help Overview

The discussion revolves around the propagation of uncertainties in the calculation of the area of a rectangle, specifically focusing on the definitions and relationships between average area, maximum area, and minimum area based on measurements of length and width.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the definitions of uncertainty in area calculations, questioning the derivation of expressions related to maximum and minimum area. There is discussion about the relationships between average values and uncertainties, as well as the validity of comparing different expressions.

Discussion Status

Participants are actively engaging with the definitions and relationships involved in the problem. Some have expressed confusion about the derivation of certain expressions, while others are attempting to clarify these concepts. There is an ongoing exploration of how uncertainties are treated in the context of area calculations.

Contextual Notes

Participants are working within the constraints of homework rules, which may limit the extent of guidance provided. The discussion includes assumptions about the nature of measurements and the definitions of average and uncertainty.

member 731016
Homework Statement
I am trying to understand how they got the line ##\Delta A_2 = \bar A - A_{min}## below

When I expand the expression above it ##A_{min} = (\bar L - \Delta L)(\bar W - \Delta W) ## I get ##A_{min} = \bar L \bar W - \Delta W \bar L - \Delta L \bar W + \Delta L \Delta W = \bar A + \Delta A_2##
Relevant Equations
Pls see below
1679705046222.png


Many thanks!
 

Attachments

  • 1679704538729.png
    1679704538729.png
    25.8 KB · Views: 150
Physics news on Phys.org
Callumnc1 said:
Homework Statement:: I am trying to understand how they got the line ##\Delta A_2 = \bar A - A_{min}## below

When I expand the expression above it ##A_{min} = (\bar L - \Delta L)(\bar W - \Delta W) ## I get ##A_{min} = \bar L \bar W - \Delta W \bar L - \Delta L \bar W + \Delta L \Delta W = \bar A + \Delta A_2##
They didn't "get it." ##\Delta A_2=\bar A-A_{min}## is a definition just like ##\Delta A_1.## They are the differences from the mean value to the high value ##A_{max}## and the the low value ##A_{min}##. The assertion is that the overall uncertainty is the the distance from the average value to the high value plus the distance from the average value to the low value. This is a simplified way to treat uncertainties.
 
  • Like
Likes   Reactions: topsquark and member 731016
kuruman said:
They didn't "get it." ##\Delta A_2=\bar A-A_{min}## is a definition just like ##\Delta A_1.## They are the differences from the mean value to the high value ##A_{max}## and the the low value ##A_{min}##. The assertion is that the overall uncertainty is the the distance from the average value to the high value plus the distance from the average value to the low value. This is a simplified way to treat uncertainties.
Thank you for your reply @kuruman!

That is very helpful that you mention that ##\Delta A_1## and ##\Delta A_2## are both definitions. Before, I thought I had derived ##A_{max} = \bar A + \Delta A_2## from ##A_{max} = \bar L \bar W + \Delta W \bar L + \Delta L \bar W + \Delta L \Delta W = \bar A + \Delta A_2##

Are why not allowed to compare the two expressions and say that ##\Delta A_2 = \Delta W \bar L + \Delta L \bar W + \Delta L \Delta W##?
Many thanks!
 
You are allowed to compare anything you want. What is actually your question about this? I already explained what they are trying to do but maybe you didn't understand it. I will say it differently.
You want to find an area. To do this, you make many measurements of the length ##L## and the width ##W##. These measurements are not identical so you have uncertainties ##\Delta L## and ##\Delta W##.

Now you can calculate average values ##\bar L## and ##\bar W## and use these to find an average for the area ##\bar A= \bar L\bar W.## You also need to calculate the uncertainty ##\Delta A## in the value for the area. The insert that you posted shows you how to do this. It is the distance (in area units) between the maximum value and the minimum value for the area. So I will ask you again, what specifically is it about this that you don't understand?
 
Last edited:
  • Like
Likes   Reactions: topsquark and member 731016
kuruman said:
You are allowed to compare anything you want. What is actually your question about this? I already explained what they are trying to do but maybe you didn't understand it. I will say it differently.
You want to find an area. To do this, you make many measurements of the length ##L## and the width ##W##. These measurements are not identical so you have uncertainties ##\Delta L## and ##\Delta W##.

Now you can calculate average values ##\bar L## and ##\bar W## and use these to find an average for the area ##\bar A= \bar L\bar W.## You also need to calculate the uncertainty ##\Delta A## in the value for the area. The insert that you posted shows you how to do this. It is the distance (in area units) between the maximum value and the minimum value for the area. So I will ask you again, what specifically is it about this that you don't understand?
Thank you for your help @kuruman!

I think I understand now :)

If I don't I will come back to this thread
 
Callumnc1 said:
Are why not allowed to compare the two expressions and say that ##\Delta A_2 = \Delta W \bar L + \Delta L \bar W + \Delta L \Delta W##?
You are allowed to compare two expressions, but only if the result is correct.

As was already stated, ##A_2 = \bar A - A_{min} = (\bar L - \Delta L)(\bar W - \Delta W)##
## = \bar L \bar W - \Delta L \bar W - \Delta W \bar L + \Delta L \Delta W##
What you wrote omits the ##\Delta W \bar L## term, which is equal to ##\bar A##.
 
Last edited:
  • Like
Likes   Reactions: member 731016

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
15
Views
1K
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
4
Views
4K
Replies
25
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K