Uncertainties propagation for area of a rectangle

Click For Summary
SUMMARY

The discussion focuses on the propagation of uncertainties in calculating the area of a rectangle, specifically addressing the definitions of uncertainty terms ##\Delta A_1## and ##\Delta A_2##. The relationship ##\Delta A_2 = \bar A - A_{min}## is established as a fundamental definition, where ##A_{min}## is derived from the average length ##\bar L## and width ##\bar W## adjusted for their respective uncertainties ##\Delta L## and ##\Delta W##. Participants clarify that the overall uncertainty in area is the sum of distances from the average to the maximum and minimum area values, emphasizing the importance of correctly applying these definitions in calculations.

PREREQUISITES
  • Understanding of basic geometry, specifically area calculations for rectangles.
  • Familiarity with statistical concepts of mean and uncertainty propagation.
  • Knowledge of mathematical notation for expressing uncertainties (e.g., ##\Delta L##, ##\Delta W##).
  • Ability to manipulate algebraic expressions involving multiple variables.
NEXT STEPS
  • Study the principles of uncertainty propagation in measurements, focusing on the formula for area calculations.
  • Learn about statistical methods for calculating mean values and their uncertainties.
  • Explore examples of uncertainty analysis in physical measurements, particularly in engineering contexts.
  • Investigate the use of software tools for uncertainty analysis, such as MATLAB or Python libraries.
USEFUL FOR

This discussion is beneficial for students in physics or engineering, researchers conducting experiments involving measurements, and professionals involved in quality control or data analysis requiring precise calculations of area and associated uncertainties.

member 731016
Homework Statement
I am trying to understand how they got the line ##\Delta A_2 = \bar A - A_{min}## below

When I expand the expression above it ##A_{min} = (\bar L - \Delta L)(\bar W - \Delta W) ## I get ##A_{min} = \bar L \bar W - \Delta W \bar L - \Delta L \bar W + \Delta L \Delta W = \bar A + \Delta A_2##
Relevant Equations
Pls see below
1679705046222.png


Many thanks!
 

Attachments

  • 1679704538729.png
    1679704538729.png
    25.8 KB · Views: 147
Physics news on Phys.org
Callumnc1 said:
Homework Statement:: I am trying to understand how they got the line ##\Delta A_2 = \bar A - A_{min}## below

When I expand the expression above it ##A_{min} = (\bar L - \Delta L)(\bar W - \Delta W) ## I get ##A_{min} = \bar L \bar W - \Delta W \bar L - \Delta L \bar W + \Delta L \Delta W = \bar A + \Delta A_2##
They didn't "get it." ##\Delta A_2=\bar A-A_{min}## is a definition just like ##\Delta A_1.## They are the differences from the mean value to the high value ##A_{max}## and the the low value ##A_{min}##. The assertion is that the overall uncertainty is the the distance from the average value to the high value plus the distance from the average value to the low value. This is a simplified way to treat uncertainties.
 
  • Like
Likes   Reactions: topsquark and member 731016
kuruman said:
They didn't "get it." ##\Delta A_2=\bar A-A_{min}## is a definition just like ##\Delta A_1.## They are the differences from the mean value to the high value ##A_{max}## and the the low value ##A_{min}##. The assertion is that the overall uncertainty is the the distance from the average value to the high value plus the distance from the average value to the low value. This is a simplified way to treat uncertainties.
Thank you for your reply @kuruman!

That is very helpful that you mention that ##\Delta A_1## and ##\Delta A_2## are both definitions. Before, I thought I had derived ##A_{max} = \bar A + \Delta A_2## from ##A_{max} = \bar L \bar W + \Delta W \bar L + \Delta L \bar W + \Delta L \Delta W = \bar A + \Delta A_2##

Are why not allowed to compare the two expressions and say that ##\Delta A_2 = \Delta W \bar L + \Delta L \bar W + \Delta L \Delta W##?
Many thanks!
 
You are allowed to compare anything you want. What is actually your question about this? I already explained what they are trying to do but maybe you didn't understand it. I will say it differently.
You want to find an area. To do this, you make many measurements of the length ##L## and the width ##W##. These measurements are not identical so you have uncertainties ##\Delta L## and ##\Delta W##.

Now you can calculate average values ##\bar L## and ##\bar W## and use these to find an average for the area ##\bar A= \bar L\bar W.## You also need to calculate the uncertainty ##\Delta A## in the value for the area. The insert that you posted shows you how to do this. It is the distance (in area units) between the maximum value and the minimum value for the area. So I will ask you again, what specifically is it about this that you don't understand?
 
Last edited:
  • Like
Likes   Reactions: topsquark and member 731016
kuruman said:
You are allowed to compare anything you want. What is actually your question about this? I already explained what they are trying to do but maybe you didn't understand it. I will say it differently.
You want to find an area. To do this, you make many measurements of the length ##L## and the width ##W##. These measurements are not identical so you have uncertainties ##\Delta L## and ##\Delta W##.

Now you can calculate average values ##\bar L## and ##\bar W## and use these to find an average for the area ##\bar A= \bar L\bar W.## You also need to calculate the uncertainty ##\Delta A## in the value for the area. The insert that you posted shows you how to do this. It is the distance (in area units) between the maximum value and the minimum value for the area. So I will ask you again, what specifically is it about this that you don't understand?
Thank you for your help @kuruman!

I think I understand now :)

If I don't I will come back to this thread
 
Callumnc1 said:
Are why not allowed to compare the two expressions and say that ##\Delta A_2 = \Delta W \bar L + \Delta L \bar W + \Delta L \Delta W##?
You are allowed to compare two expressions, but only if the result is correct.

As was already stated, ##A_2 = \bar A - A_{min} = (\bar L - \Delta L)(\bar W - \Delta W)##
## = \bar L \bar W - \Delta L \bar W - \Delta W \bar L + \Delta L \Delta W##
What you wrote omits the ##\Delta W \bar L## term, which is equal to ##\bar A##.
 
Last edited:
  • Like
Likes   Reactions: member 731016

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
15
Views
1K
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
4
Views
4K
Replies
25
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K