Uncertainty Principle and Fourier Transform

gareththegeek
Messages
16
Reaction score
0
I have read that the time dependent wavefunction is related to the Fourier transform of the wavefunction for the angular wavenumber like so

\bar{\psi}(k,t) = \frac{1}{\sqrt{2\pi}}\int \psi(x,t)e^{-ikx}dx

Can anyone explain why it is relevant to take the Fourier transform of the wavefunction in this case?

Is it the case that the wavefunction is a composite of more than one sinusoidal wave, taking the Fourier transform of which allows analysis of the component frequencies where the component frequencies are related to the angular wavenumber?

I understand that this leads to the Heisenberg Uncertainty Principle since the more you compress the wavefunction the more spread out becomes the Fourier transform, meaning therefore that you cannot know both with 100% accuracy. Is this right?

Thanks,
G
 
Physics news on Phys.org
gareththegeek said:
Is it the case that the wavefunction is a composite of more than one sinusoidal wave, taking the Fourier transform of which allows analysis of the component frequencies where the component frequencies are related to the angular wavenumber?

Yes!

I understand that this leads to the Heisenberg Uncertainty Principle since the more you compress the wavefunction the more spread out becomes the Fourier transform, meaning therefore that you cannot know both with 100% accuracy. Is this right?

Yes! :smile:
 
Nice! Perhaps I'm finally beginning to get the hang of this ere quantum stuff then eh, eh?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top