andresordonez
- 65
- 0
HI, I will not used the template provided since this is not a textbook problem. It's a problem I have with a demonstration in Quantum Mechanics Vol 1, Cohen-Tannoudji
"
Complement C III
[Q,P] = i \hbar
Consider the ket:
|\phi \rangle = (Q +i\lambda P)|\psi \rangle
where \lambda is an arbitrary real parameter. For all \lambda, the square norm \langle \phi | \phi \rangle is positive. This is written:
\langle \phi | \phi \rangle = \langle \psi | (Q - i \lambda P)(Q + i \lambda P) | \psi \rangle
=\langle \psi | Q^2 | \psi \rangle + \langle \psi | (i \lambda Q P - i \lambda P Q) | \psi \rangle + \langle \psi | \lambda ^2 P^2 | \psi \rangle
=\langle Q^2 \rangle + i \lambda \langle [Q,P] \rangle + \lambda ^2 \langle P^2 \rangle
=\langle Q^2 \rangle - \lambda \hbar + \lambda ^2 \langle P^2 \rangle \geqslant 0
The discriminant of this expression, of second order in \lambda, is therefore negative or zero:
\hbar ^2 - 4 \langle P^2 \rangle \langle Q^2 \rangle \leqslant 0
and we have:
\langle P^2 \rangle \langle Q^2 \rangle \geqslant \frac{\hbar ^2}{4}
"
I don't understand why the discriminant must be negative or zero for \lambda to be real. As far as I know, if you have:
a x^2 + b x + c = 0
with a, b, c reals, then:
x = \frac{-b \pm sqrt{b^2 - 4 a c}}{2 a}
and x is real if:
b^2 - 4 a c \geqslant 0
In this case:
a = \langle P^2 \rangle
b = -\hbar
c = \langle Q^2 \rangle
so the discriminant should be positive or zero instead of negative or zero right?
"
Complement C III
[Q,P] = i \hbar
Consider the ket:
|\phi \rangle = (Q +i\lambda P)|\psi \rangle
where \lambda is an arbitrary real parameter. For all \lambda, the square norm \langle \phi | \phi \rangle is positive. This is written:
\langle \phi | \phi \rangle = \langle \psi | (Q - i \lambda P)(Q + i \lambda P) | \psi \rangle
=\langle \psi | Q^2 | \psi \rangle + \langle \psi | (i \lambda Q P - i \lambda P Q) | \psi \rangle + \langle \psi | \lambda ^2 P^2 | \psi \rangle
=\langle Q^2 \rangle + i \lambda \langle [Q,P] \rangle + \lambda ^2 \langle P^2 \rangle
=\langle Q^2 \rangle - \lambda \hbar + \lambda ^2 \langle P^2 \rangle \geqslant 0
The discriminant of this expression, of second order in \lambda, is therefore negative or zero:
\hbar ^2 - 4 \langle P^2 \rangle \langle Q^2 \rangle \leqslant 0
and we have:
\langle P^2 \rangle \langle Q^2 \rangle \geqslant \frac{\hbar ^2}{4}
"
I don't understand why the discriminant must be negative or zero for \lambda to be real. As far as I know, if you have:
a x^2 + b x + c = 0
with a, b, c reals, then:
x = \frac{-b \pm sqrt{b^2 - 4 a c}}{2 a}
and x is real if:
b^2 - 4 a c \geqslant 0
In this case:
a = \langle P^2 \rangle
b = -\hbar
c = \langle Q^2 \rangle
so the discriminant should be positive or zero instead of negative or zero right?
Last edited: