Under what condition <AB>=<A><B> stands?

  • Thread starter Thread starter Robert_G
  • Start date Start date
  • Tags Tags
    Condition
Robert_G
Messages
36
Reaction score
0
The same thing as title.
 
Physics news on Phys.org
The < has to be an eigenstate of A, and the > an eigenstate of B.
 
Can you tell me why?
 
[A,B]=0? Am i right?
 
In some normalized state |f> you want to know when is <f|AB|f>=<f|A|f><f|B|f> (if the state is not normalized, then we have to add some factors in the denominator, which is annoying notationally, but easy to do).

If A|f>=a|f> and B|f>=b|f> then we can see that <f|AB|f>=ba<f|f>=ab and <f|A|f><f|B|f>=ab<f|f><f|f>=ab. So in the case that |f> is an eigenstate of both A and B, then we will have this equality hold. This condition is therefore sufficient, but is it necessary? Actually it's late right now, and off the top of my head, I am unsure if this condition is necessary, perhaps you can finish the other half of the proof.

Do we need [A,B]=0? Well, in the above sufficiency argument we required that |f> be an eigenstate of both A and B. So we only required that the state in which we take the expectation value to be an eigenstate of both A and B. We did not require that A and B share a complete set of eigenstates. So although [A,B]=0 is a sufficient condition, since commuting operators share eigenstates, it is not strictly speaking necessary. There could be exotic conditions where non-commuting operators share 1 eigenstate in common for example.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top