Understanding Basis Choices in Quantum Mechanics

  • Thread starter Thread starter Verdict
  • Start date Start date
  • Tags Tags
    Basis
Verdict
Messages
114
Reaction score
0

Homework Statement


Alright, so this is not exactly a guided homework question. It is a rather intricate problem consisting of many steps, but one of these steps comes down to working out the hyperfine interaction between two spin 1 particles, from a hamiltonian point of view. From what I have been given, in this particular setup it can be simplified to the equation below:

Homework Equations


H = A S_{z}⊗I_{z}

where S and Z are angular momentum operators corresponding to the Z axis.

The Attempt at a Solution


Alright, so my problem is how I go about knowing which column of each matrix correspons to what. Does the first column correspond to the spin being 0, 1 or -1, basically. I have illustrated my question with the picture below, working out a specific case, where I indicate the spin of the first particle by mS and the spin of the second particle by mI. The reason for why the ordering is important to me is because I want to perform an experiment in which I have to be able to distinguish between the second particle being spin 1, 0 or -1, and the only way I can think of doing so in my specific setup is if I know which values of the hamiltonian correspond to which combination of (spin particle 1, spin particle 2)

2z6zbqa.jpg


Somehow I seem to remember that this choice of basis is arbitrary, which means that no specific one corresponds to spin 1, 0, or -1. This would be problematic, as I need a clear way to distinguish them from one another.

Edit: I understand that my question is a bit vague. It basically boils down to if the numbers I put under the matrix are set, or if they can be chosen arbitrarily.
 
Last edited:
Physics news on Phys.org
I don't understand where you are going with this. By if you have hyperfine interaction, then ##m_S## and ##m_I## are no longer good quantum numbers and cannot be used to describe eigenstates of the system.
 
Hmm. Well, I suppose I should have added more context, as looking back at it it is indeed not clear at all what I am trying to say. In the end my question boiled down to which eigenvectors corresponded to what columns of the pauli matrices for a spin 1 particle, which is easily answered. But thank you for giving my question some thought, and I apologize for wasting your time!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top