Understanding Energy Levels and Transitions in Magnetic Fields

ABlibo
Messages
4
Reaction score
1
Homework Statement
I need help in solving this problem.
An atom escaped with L=1 emits photon with wavelength 600nm as it decays to a state with L=0. If the atom is placed in a magnetic field of magnitude 2.00T determine the shift in the energy levels and the wavelength and the atoms orbital magnetic field.
Thanks for any help.
Relevant Equations
interaction energy = mL*B*Ub
Ub=magnetic moment
B=magnetic field
mL=angular momentum.
PE= -U*B
U=magnetic dipole moment
Don't know how to relate the equations.
Thanks for your help.
 
Physics news on Phys.org
kuruman said:
I understand the formula well but problem now is how to assign the mL values. For L=1 we'll have 3 mL values as -1 0 +1 and L=2 we'll have 5 mL values as -2 -1 0 +1 +2. How then do I represent them in the formula to get the final solution? Thanks for your help.
 
The transition is from L = 1 to L = 0. There is no L = 2. Draw an energy level diagram. How many levels (total) do you have? How many possible transitions do you have? What is the energy separation between energy levels before the atom is placed in the magnetic field? What is the energy separation between energy levels after the atom is placed in the magnetic field??
 
  • Like
Likes ABlibo
kuruman said:
The transition is from L = 1 to L = 0. There is no L = 2. Draw an energy level diagram. How many levels (total) do you have? How many possible transitions do you have? What is the energy separation between energy levels before the atom is placed in the magnetic field? What is the energy separation between energy levels after the atom is placed in the magnetic field??
Thanks for the correction. I understand the step by step break down of the whole process. I'll now do the maths.
 
kuruman said:
The transition is from L = 1 to L = 0. There is no L = 2. Draw an energy level diagram. How many levels (total) do you have? How many possible transitions do you have? What is the energy separation between energy levels before the atom is placed in the magnetic field? What is the energy separation between energy levels after the atom is placed in the magnetic field??
Thanks for the correction. I understand the step by step break down of the whole process. I'll now do the maths.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top