- #1
- 5
- 0
I've been re-reading Hawking's Brief book (for the fourth time :-) and trying to understand a bit more.
He discusses how General Relativity tell us that the planets don't orbit due to gravity, but due to the bending of space-time by mass/energy. That in fact, they are actually following a straight path (geodesic) in curved space-time. I was able to wrap my mind around all that after repeated attempts. (Feel free to correct me if I missed the boat). So, gravity doesn't seem to really apply in the Newtonian way.
I also understand roughly how Relativity has issues at the sub-atomic level and the want for a unified theory.
With that in hand, what I am now confused about is Newton's Theory of Gravity and objects that are in between. For example, dropping a ball and having it head towards the earth. Is Newton's Theory still valid for such observations? Or is there some other part of General Relativity that applies here to explain this attraction of the ball to the larger mass? Is the Theory of Gravity still valid at some level in light of General Relativity?
He discusses how General Relativity tell us that the planets don't orbit due to gravity, but due to the bending of space-time by mass/energy. That in fact, they are actually following a straight path (geodesic) in curved space-time. I was able to wrap my mind around all that after repeated attempts. (Feel free to correct me if I missed the boat). So, gravity doesn't seem to really apply in the Newtonian way.
I also understand roughly how Relativity has issues at the sub-atomic level and the want for a unified theory.
With that in hand, what I am now confused about is Newton's Theory of Gravity and objects that are in between. For example, dropping a ball and having it head towards the earth. Is Newton's Theory still valid for such observations? Or is there some other part of General Relativity that applies here to explain this attraction of the ball to the larger mass? Is the Theory of Gravity still valid at some level in light of General Relativity?