Phymath
- 183
- 0
Homework Statement
I'm trying to see the relation of the rotation of a vector in a plane to the generator of rotations...I want to see how e^{-i \theta J} the rotation representation gives you the same result as acting on any vector with the rotation matrix say with the z direction fixed.
<br /> \[ \left( \begin{array}{ccc}<br /> Cos(\theta) & -Sin(\theta) & 0 \\<br /> Sin(\theta) & Cos(\theta) & 0 \\<br /> 0 & 0 & 1 \end{array} \right)\] = R_z
is R_z \textbf{v} = e^{-i \theta J_z^{(1)}} \textbf{v}
because a 3 dimensional vector has a spin one representation (right? because one full rotation gives the same vector back)
with J_z^{(1)} = \[ \left( \begin{array}{ccc}<br /> 1 & 0 & 0 \\<br /> 0 & 0 & 0 \\<br /> 0 & 0 & -1 \end{array} \right)\]
I get e^{-i \theta J_z^{(1)}} = \sum\frac{(-i \theta)^n}{n!}(J_z)^n = Cos(\theta)(J_z)^2-i J_z^{(1)} Sin(\theta)
<br /> e^{-i \theta J_z^{(1)}}= \[ \left( \begin{array}{ccc}<br /> Cos(\theta)-i Sin(\theta) & 0 & 0 \\<br /> 0 & 0 & 0 \\<br /> 0 & 0 & Cos(\theta)+i Sin(\theta) \end{array} \right)\]
when this matrix is applied to the vector \textbf{v} it doesn't produce the same effect someone help finish the missing pieces thanks!